

Web:
http://www.es.mdh.se/staff/349-
Eduard_Paul_Enoiu

E-mail: eduard.paul.enoiu@mdh.se

School of Innovation,
Design and Engineering

5. Modeling and Verification of Finite State Machines

This document provides the laboratory instructions for the first session on Model-based
testing. The objective of the lab is (i) for the course participants to get acquainted with a
modeling and verification tool and (ii) to get experience of modeling and verifying properties
of finite state machines.

Exercise 1 – Modeling and verification of an untimed system
In this first exercise, we shall work with a version of the alternating bit protocol - a well-
known communication protocol, based on the sliding window technique. It provides reliable
transfer on a lossy and noisy channel.
The exercises are performed using the UPPAAL tool and a set of pre-implemented models.
Please use the following link section to install UPPAAL 4.0:

http://www.it.uu.se/research/group/darts/uppaal/download.shtml
To find out more about UPPAAL, read this short introduction:
http://www.it.uu.se/research/group/darts/uppaal/about.shtml#introduction

Alternating Bit Protocol description
The model of alternating bit protocol consists of three entities: Sender, Medium and
Receiver. The Sender sends messages and receives acknowledgments, Medium retransmits
messages and acknowledgments, and Receiver receives messages and transmits
acknowledgments.
Since the Medium can lose messages, to ensure that the messages have been properly
transmitted, a bit is added to each message. The Sender will try to retransmit message with
the bit 0 as long as it does not receive corresponding acknowledgment containing the bit 0.
Similarly for bit 1.

The Sender sends messages s0 or s1 to the Medium which is supposed to deliver them to the
Receiver. After sending the message s0, the Sender expects to receive sack0 acknowledgment
from the Receiver. It will proceed with the sending of the next message only once the
acknowledgment sack0 is received. If for some certain amount of time an acknowledgment is
not received, it will try resending the message s0. When it receives sack0, the Sender will go
on to send the message s1 and wait for the corresponding acknowledgment rack1 while
possibly resending the message	 s1 if timeout occurs or wrong acknowledgment is received.
After successfully getting the acknowledgment for s1, it will start sending s0 again.

The receiver starts by waiting to receive one of the messages r0 or r1 from the Medium (a
forwarded s0 or s1) and, after receiving it, sends the acknowledgment rack0 or rack1 to the
Medium, corresponding to the incoming message. Internally, the Receiver is keeping track of
whether it is time to receive message r0 or r1 to be able to discard duplicate messages cause
by a faulty channel.
The Medium receives the messages s0 and s1 and sometimes forwards them as r0 and r1 to
the Receiver. It also receives acknowledgments rack0 and rack1 from the Receiver and
occasionally forwards them to the Sender as sack0 and sack1, respectively. If it does not
forward the messages or acknowledgments, it receives them ignores them.

2(2)

Tasks:

1. Unzip the pre-implemented models from the following link:
http://www.promptedu.se/promptwp/wp-content/uploads/2014/10/5.Lab1_.zip

2. Start the UPPAAL tool. It will open up with a default workspace. Select the “File” menu
and click on the “Open System” item. A drop-down menu will appear. Select the folder
in which you unzipped the pre-implemented models	 and	 select abp0.xml file. Click
“Open”. It will open up with a workspace, including a navigation panel and an already
modeled system.

3. Take a look at the three automata that are included in the project. Navigate between
them using the project tree on the left side of the user interface.

4. Note the “Declarations” part of the project tree where the synchronization channels
are declared.

5. Switch to the second tab, the “Simulator” and use “Next” or “Random” button to
simulate execution of the system. You can navigate forward and backwards through
the simulation by selecting the appropriate step in the “Simulation Trace”. On the
bottom right part of the screen, you can see synchronization channel activity. It might
be required to expand that part of the window.

6. Switch to the third tab, the “Verifier”. You should be presented by a single verification
query: E<>	 sender.WaitAck. Test the query by clicking the “Check” button.

7. Add another query by clicking on the “Insert” button in “Verifier” tab. In the middle of
the window is the space to write the query itself. Use the query provided to build a
query that will check whether the model is deadlock free. Test it.

8. Notice that the model provided always sends the message s0, and therefore does not
implement the ABP protocol. Update the model so that it corresponds to the
specification above while assuming that:

a. The medium always forwards all of the messages.
b. There are no timeouts in the system.

9. Verify that the new model is deadlock free.
10. Use the verifier to check whether every time the sender starts sending, the receiver

will eventually receive the message (“leads to” -‐-‐> operator is useful for this purpose.

11. Send the solutions containing the abp0.xml and abp0.q files to
eduard.paul.enoiu@mdh.se.

Help: The commonly used operators for queries in Uppaal
p is reachable E<> p
p is an invariant A[] p
p leads to q p --> q

Example:
System is never in state Sender.a A[] not Sender.a
System can deadlock E<> deadlock

