
Static Program Analysis
Lecture 4: Dataflow Analysis

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis

Dataflow Analysis

Computes data flow relations between statements in imperative programs

“Classical” family of program analyses, the first to appear

Routinely used in compilers, to find opportunities for code optimization

Can also be used to detect some kinds of bugs

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 1

A Dataflow Analysis Example

Reaching Definitions: when a variable is assigned a value, where is that
value possibly “active” (not surely overwritten)?

For each point in the program, the analysis computes a set of reaching
definitions (x,l)

l is the location of a statement where x is assigned

If the set in program point p contains (x,l), then the assignment of x at l
may reach p

This information can be used by optimizing compilers

Also to check for possible use of unassigned variables (potential bug)

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 2

Example Program

STARTx = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

We use Control-Flow Graph (CFG) program representation

Program points = edges in the CFG (places where you end up after having
executed a statement)

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 3

Equations for Reaching Definitions Analysis I

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

S2

S4

S5

S1

S3
S6

S0
START

For each program point a set of reaching definitions: S0, . . . , S6

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 4

Equations for Reaching Definitions Analysis II

x =

l

S

S’ = f(S)

Sets are related through equations S′ = f(S). For assignments,

f(S) = (S \ { (x,l’) | l′ ∈ L }) ∪ {(x,l)}

All “old” definitions (x,l’) are overwritten, and (x,l) is added

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 5

Equations for Reaching Definitions Analysis III

Join nodes, and test nodes:

S1
yes

no

S2

S3

S1

S3

S2
test

S3 = S1 ∪ S2 S3 = S1, S2 = S1

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 6

Equations for Reaching Definitions Analysis IV

S0 = {(x, ?), (y, ?)}
S1 = f1(S0)

S2 = S1 ∪ S6

S3 = S2

S4 = S2

S5 = f3(S4)

S6 = f4(S5)

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

S2

S4

S5

S1

S3
S6

S0
START

A system of set equations relating S0, . . . , S6

Initial definitions (x,?), (y,?) for x and y, where the program starts

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 7

Solving the Equations

S0,0 = ∅
S1,0 = ∅
S2,0 = ∅
S3,0 = ∅
S4,0 = ∅
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START
empty

empty

empty

empty

empty

empty

empty

We use least fixed-point iteration

Start iteration with least possible sets (∅), then iterate the equations until no
set changes anymore (sets to check for change marked red)

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 8

Iteration 1

Update using equation S0 = {(x,?), (y,?)}:

S0,1 = {(x, ?), (y, ?)}
S1,0 = ∅
S2,0 = ∅
S3,0 = ∅
S4,0 = ∅
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START
empty

empty

empty

empty

empty

empty

{(x,?),(y,?)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 9

Iteration 2

Update using equation S1 = f1(S0):

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,0 = ∅
S3,0 = ∅
S4,0 = ∅
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

empty

empty

empty

empty

empty

{(x,?),(y,?)}
{(x,1),(y,?)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 10

Iteration 3

Update using equation S2 = S1 ∪ S6:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,1 = {(x, 1), (y, ?)}
S3,0 = ∅
S4,0 = ∅
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

empty

empty

empty

empty

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 11

Iteration 4

Update using equation S3 = S2:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,1 = {(x, 1), (y, ?)}
S3,1 = {(x, 1), (y, ?)}
S4,0 = ∅
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

empty

empty

empty

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 12

Iteration 5

Update using equation S4 = S2:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,1 = {(x, 1), (y, ?)}
S3,1 = {(x, 1), (y, ?)}
S4,1 = {(x, 1), (y, ?)}
S5,0 = ∅
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

empty

empty

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 13

Iteration 6

Update using equation S5 = f3(S4):

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,1 = {(x, 1), (y, ?)}
S3,1 = {(x, 1), (y, ?)}
S4,1 = {(x, 1), (y, ?)}
S5,1 = {(x, 1), (y, 3)}
S6,0 = ∅

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

empty

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 14

Iteration 7

Update using equation S6 = f4(S5):

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,1 = {(x, 1), (y, ?)}
S3,1 = {(x, 1), (y, ?)}
S4,1 = {(x, 1), (y, ?)}
S5,1 = {(x, 1), (y, 3)}
S6,1 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,3)}

{(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 15

Iteration 8

Update using equation S2 = S1 ∪ S6:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S3,1 = {(x, 1), (y, ?)}
S4,1 = {(x, 1), (y, ?)}
S5,1 = {(x, 1), (y, 3)}
S6,1 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,3)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 16

Iteration 9

Update using equation S3 = S2:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S3,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S4,1 = {(x, 1), (y, ?)}
S5,1 = {(x, 1), (y, 3)}
S6,1 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,?)}

{(x,1),(y,3)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 17

Iteration 10

Update using equation S4 = S2:

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S3,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S4,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S5,1 = {(x, 1), (y, 3)}
S6,1 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,1),(y,3)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 18

Iteration 11

Update using equation S5 = f3(S4):

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S3,2 = {(x, 1), (y, ?),

, (x, 4), (y, 3)}
S4,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S5,2 = {(x, 1), (x, 4),

(y, 3)}
S6,1 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 19

Iteration 12

Update using equation S6 = f4(S5):

S0,1 = {(x, ?), (y, ?)}
S1,1 = {(x, 1), (y, ?)}
S2,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S3,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S4,2 = {(x, 1), (y, ?),

(x, 4), (y, 3)}
S5,2 = {(x, 1), (x, 4),

(y, 3)}
S6,2 = {(x, 4), (y, 3)}

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(x,4),(y,3)}

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 20

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(x,4),(y,3)}

S6 did not change. Thus, nothing more can change (no red sets left). We
have reached a fixed-point – a solution to the system of equations! This is
the result of the analysis

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 21

x = 1

1

y < 0? STOP

y = y−1x = x+y

2

34

yes

no

START

{(x,?),(y,?)}
{(x,1),(y,?)}

{(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(y,?),(x,4),(y,3)}

{(x,1),(x,4),(y,3)}

Statements 2 and 3 use y. Presence of (y,?) implies that y possibly is not
initialized there, a potential bug

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 22

A Remark on the Underlying Math

None of the sets S0, . . . , S6 ever shrunk during the iteration

This is due to a property of the transfer functions called monotonicity

This property guarantees that the fixed-point iteration terminates in a finite
number of steps: since there is an upper limit how big each set can be, and
since sets never shrink, sooner or later no set will change any more!

Starting with empty sets gives the least possible (most precise) solution

Underlying mathematical theory of complete lattices. Tarski’s Fixed-Point
Theorem guarantees that least solutions always exist and can be found in
this way

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 23

Wrapping Up Lectures 1 – 4

Semantics-based static program analysis works by:

1. setting up equations according to program structure

2. solving the equations by fixed-point iteration

The solution tells something about the properties of the program

Many different properties can be derived, by setting up different kinds of
equations

The analyses make safe overapproximations – reports on absence of errors
can be trusted, but there may be false positives

Automated tools exist, and are increasingly being used

Software Testing – Module 4 – Static Program Analysis: Lecture 4, Dataflow Analysis 24

