Static Program Analysis
Lecture 5: Basics of Value Analysis

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Value Analysis

To find out what values that different program variables may hold in different
program points

Example:

/+* x can be anything here */

x = 0;
/* x 1s 1in the interval [0 .. 0] here x/
for 1 = 1 to 10 do
/* x 1s 1n the interval [0 .. 18] here x/
X = X + 2;
/* x 1s 1n the interval [2 .. 20] here x/

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Usages of Value Analysis

Knowledge of program variable values can be used to find a number of
potential bugs:

e Division by zero

e Under/overflows

e Array accesses out of bounds
e Etc ...

A tool that performs value analysis can warn for these kinds of bugs
A safe value analysis can sometimes prove that such bugs never can occur!

Very interesting for high-integrity systems, since hard to verify through
testing alone

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis 2

Concrete States

A program that is executing will transit between concrete states
These states consist of a current program location and a memory contents

The memory contents is a table, which tells for each memory location what
the contents is

In a high-level language (like C), memory locations are program variables

Some concrete states for a program with (integer) variables x and y:

x | 17 x| 0 x | 4711 x | 32767
v | 3 v | —7 Y 1 vy | —32768

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Abstract States

Abstract states represent sets of concrete program states:

A
Y
Concrete states

Abstract state

X

-
-

A value analysis computes abstract states for the different program points in
a program. This tells which values program variables may hold there

A safe value analysis computes abstract states that always contain all the
possible concrete states in a given program point

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Interval Analysis

An interval |a, b] is the set of all numbers between a and b:

a b

Intervals are efficiently represented by two numbers, regardless of size

Therefore interval analysis, with abstract states mapping variables to
intervals, is common. This is a fast but somewhat imprecise analysis

Some abstract states with intervals for a program with variables x and v:

x| [0,1] X 1, 1] X | [—00, 0] X
vy | [—5, 5] y | [0,32767] vy | [5,0o0] y

==

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Abstract States with Intervals

Intervals yield abstract states that are “bounding boxes”:

Interval X
for y

Interval for x

Abstract states with intervals form the “Interval Domain”

\j

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

How to Perform Value Analysis

Value analysis is done by solving equations
Very similar to data flow analysis

The equations relate abstract states rather than sets: one abstract state per
program point (edge in the CFQG)

The equations are formed from transfer functions for CFG nodes

Same method for solving the system of equations — fixed-point iteration
starting with the “least” abstract state

We will show how it works for the Interval Domain in the next lecture

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

Safety of Value Analysis

Underlying mathematical framework of Abstract Interpretation
Relates sets of concrete states with abstract states
If certain conditions are fulfilled, then:

e Fixed-point iteration from the “least” abstract state is safe, and

e it will yield the best (smallest) solution to the system of equations

Having a formal mathematical framework increases the confidence in the
analysis a lot. An analysis tool basically performs a mathematical proof
when analysing code

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis

