
Static Program Analysis
Lecture 5: Basics of Value Analysis

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis

Value Analysis

To find out what values that different program variables may hold in different
program points

Example:

/* x can be anything here */
x = 0;
/* x is in the interval [0 .. 0] here */
for i = 1 to 10 do
/* x is in the interval [0 .. 18] here */
x = x + 2;
/* x is in the interval [2 .. 20] here */

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 1

Usages of Value Analysis

Knowledge of program variable values can be used to find a number of
potential bugs:

• Division by zero

• Under/overflows

• Array accesses out of bounds

• Etc . . .

A tool that performs value analysis can warn for these kinds of bugs

A safe value analysis can sometimes prove that such bugs never can occur!

Very interesting for high-integrity systems, since hard to verify through
testing alone

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 2

Concrete States

A program that is executing will transit between concrete states

These states consist of a current program location and a memory contents

The memory contents is a table, which tells for each memory location what
the contents is

In a high-level language (like C), memory locations are program variables

Some concrete states for a program with (integer) variables x and y:

x 17
y 3

x 0
y −7

x 4711
y 1

x 32767
y −32768

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 3

Abstract States

Abstract states represent sets of concrete program states:

y

x

x

x

x

x

x

x

Abstract state

Concrete states

A value analysis computes abstract states for the different program points in
a program. This tells which values program variables may hold there

A safe value analysis computes abstract states that always contain all the
possible concrete states in a given program point

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 4

Interval Analysis

An interval [a, b] is the set of all numbers between a and b:

ba

Intervals are efficiently represented by two numbers, regardless of size

Therefore interval analysis, with abstract states mapping variables to
intervals, is common. This is a fast but somewhat imprecise analysis

Some abstract states with intervals for a program with variables x and y:

x [0, 1]
y [−5, 5]

x [1, 1]
y [0, 32767]

x [−∞,∞]
y [5,∞]

x ∅
y ∅

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 5

Abstract States with Intervals

Intervals yield abstract states that are “bounding boxes”:

Interval

for y

y

x

x

x

x

x

x

x

Interval for x

Abstract states with intervals form the “Interval Domain”

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 6

How to Perform Value Analysis

Value analysis is done by solving equations

Very similar to data flow analysis

The equations relate abstract states rather than sets: one abstract state per
program point (edge in the CFG)

The equations are formed from transfer functions for CFG nodes

Same method for solving the system of equations – fixed-point iteration
starting with the “least” abstract state

We will show how it works for the Interval Domain in the next lecture

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 7

Safety of Value Analysis

Underlying mathematical framework of Abstract Interpretation

Relates sets of concrete states with abstract states

If certain conditions are fulfilled, then:

• Fixed-point iteration from the “least” abstract state is safe, and

• it will yield the best (smallest) solution to the system of equations

Having a formal mathematical framework increases the confidence in the
analysis a lot. An analysis tool basically performs a mathematical proof
when analysing code

Software Testing – Module 4 – Static Program Analysis: Lecture 5, Basics of Value Analysis 8

