Static Program Analysis
Lecture 5: Basics of Value Analysis
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Value Analysis

To find out what values that different program variables may hold in different
program points

Example:

/+* x can be anything here */

x = 0;
/* x 1s 1in the interval [0 .. 0] here x/
for 1 = 1 to 10 do
/* x 1s 1n the interval [0 .. 18] here x/
X = X + 2;
/* x 1s 1n the interval [2 .. 20] here x/
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Usages of Value Analysis

Knowledge of program variable values can be used to find a number of
potential bugs:

e Division by zero

e Under/overflows

e Array accesses out of bounds
e Etc ...

A tool that performs value analysis can warn for these kinds of bugs
A safe value analysis can sometimes prove that such bugs never can occur!

Very interesting for high-integrity systems, since hard to verify through
testing alone
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Concrete States

A program that is executing will transit between concrete states
These states consist of a current program location and a memory contents

The memory contents is a table, which tells for each memory location what
the contents is

In a high-level language (like C), memory locations are program variables

Some concrete states for a program with (integer) variables x and y:

x | 17 x| 0 x | 4711 x | 32767
v | 3 v | —7 Y 1 vy | —32768

Software Testing — Module 4 — Static Program Analysis: Lecture 5, Basics of Value Analysis



Abstract States

Abstract states represent sets of concrete program states:

A
Y
Concrete states

Abstract state

X

-
-

A value analysis computes abstract states for the different program points in
a program. This tells which values program variables may hold there

A safe value analysis computes abstract states that always contain all the
possible concrete states in a given program point
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Interval Analysis

An interval |a, b] is the set of all numbers between a and b:

a b

Intervals are efficiently represented by two numbers, regardless of size

Therefore interval analysis, with abstract states mapping variables to
intervals, is common. This is a fast but somewhat imprecise analysis

Some abstract states with intervals for a program with variables x and v:

x| [0,1] X 1, 1] X | [—00, 0] X
vy | [—5, 5] y | [0,32767] vy | [5,0o0] y

==
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Abstract States with Intervals

Intervals yield abstract states that are “bounding boxes”:

Interval X
for y

Interval for x

Abstract states with intervals form the “Interval Domain”

\j
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How to Perform Value Analysis

Value analysis is done by solving equations
Very similar to data flow analysis

The equations relate abstract states rather than sets: one abstract state per
program point (edge in the CFQG)

The equations are formed from transfer functions for CFG nodes

Same method for solving the system of equations — fixed-point iteration
starting with the “least” abstract state

We will show how it works for the Interval Domain in the next lecture
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Safety of Value Analysis

Underlying mathematical framework of Abstract Interpretation
Relates sets of concrete states with abstract states
If certain conditions are fulfilled, then:

e Fixed-point iteration from the “least” abstract state is safe, and

e it will yield the best (smallest) solution to the system of equations

Having a formal mathematical framework increases the confidence in the
analysis a lot. An analysis tool basically performs a mathematical proof
when analysing code
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