
© Springer International Publishing Switzerland 2015
S.C. Satapathy et al. (eds.), Proc. of the 3rd Int. Conf. on Front. of Intell. Comput. (FICTA) 2014

113

– Vol. 1, Advances in Intelligent Systems and Computing 327, DOI: 10.1007/978-3-319-11933-5_13

A Survey of Dynamic Program Analysis Techniques
and Tools

Anjana Gosain and Ganga Sharma

University School of Information and Communication Technology,
Guru Gobind Singh Indraprastha University, New Delhi-110078, India
anjana_gosain@hotmail.com, ganga.negi@gmail.com

Abstract. Dynamic program analysis is a very popular technique for analysis of
computer programs. It analyses the properties of a program while it is execut-
ing. Dynamic analysis has been found to be more precise than static analysis in
handling run-time features like dynamic binding, polymorphism, threads etc.
Therefore much emphasis is now being given on dynamic analysis of programs
(instead of static analysis) involving the above mentioned features. Various
techniques have been devised over the past several years for the dynamic analy-
sis of programs. This paper provides an overview of the existing techniques and
tools for the dynamic analysis of programs. Further, the paper compares these
techniques for their merits and demerits and emphasizes the importance of each
technique.

Keywords: dynamic analysis, static analysis, instrumentation, profiling, AOP.

1 Introduction

Analysing the dynamic behaviour of a software is invaluable for software developers
because it helps in understanding the software well. Static analysis has long been used
for analysing the dynamic behavior of programs because it is simple and does not
require running the program [6], [24]. Dynamic analysis, on the other hand, is the
analysis of the properties of a running program [1]. It involves the investigation of
the properties of a program using information gathered at run-time. Deployment of
software now-a-days as a collection of dynamically linked libraries is rendering static
analysis imprecise [32]. Moreover, the widespread use of object oriented languages,
especially Java, to write software has lead to the usage of run-time features like dy-
namic binding, polymorphism, threads etc. Static analysis is found to be ineffective in
these kinds of dynamic environments. Whereas static analysis is restricted in analyz-
ing a program effectively and efficiently, and may have trouble in discovering all
dependencies present in the program, dynamic analysis has the benefit of examining
the concrete domain of program execution [1]. Therefore dynamic analysis is gaining
much importance for the analysis of programs.

Dynamic and static analysis are regarded as complementary approaches and have
been compared for their merits and demerits[17], [18]. Some of the major differences
of dynamic analysis with static analysis are listed in Table 1. The main advantage of

114 A. Gosain and G. Sharma

dynamic analysis over static analysis is that it can examine the actual, exact run-time
behaviour of the program and is very precise. On the contrary, the main disadvantage
of dynamic analysis is that it depends on input stimuli and therefore cannot be gene-
ralized for all executions. Nevertheless, dynamic analysis techniques are proving use-
ful for the analysis of programs and are being widely used. Efforts are also being
made to combine dynamic and static analysis to get benefit from the best features of
both. For example, static and dynamic analysis capability has been provided in a
framework called CHORD [33], a dynamic analysis tool is used as an annotation as-
sistant for a static tool in [34] etc.

Table 1. Comparison of Dynamic analysis with Static Analysis

Dynamic Analysis Static Analysis

Requires program to be executed Does not require program to be executed

More precise Less precise

Holds for a particular execution Holds for all the executions

Best suited to handle run-time programming lan-
guage features like polymorphism, dynamic bind-

ing, threads etc.

Lacks in handling run-time programming lan-
guage features.

Incurs large run-time overheads Incurs less overheads

The remainder of this paper is structured as follows. Firstly, the main techniques of
dynamic analysis are described followed by a comparison of each technique. Then, a
description of the most widely used dynamic analysis tools is given. Finally, in the
last section, we describe the main conclusions and the future work.

2 Dynamic Analysis Techniques

Dynamic analysis techniques reason over the run-time behavior of systems[17].In
general, dynamic analysis involves recording of a program's dynamic state. This dy-
namic state is also called as profile/trace. A program profile measures occurrences of
events during program execution[2]. The measured event is the execution of a local
portion of program like lines of code, basic blocks, control edges, routines etc. Gener-
ally, a dynamic analysis technique involves the following phases: 1) program instru-
mentation and profile/trace generation, 2) analysis or monitoring [27]. Program
instrumentation is the process of inserting additional statements into the program for
the purpose of generating traces. These instrumented statements are executed at the
same time when the program is running. The fundamental challenge for success of
dynamic analysis lies in the creation of instrumentation and profiling infrastructures
that enable the efficient collection of run-time information [32]. Depending upon the
instrumentation provided, required information from one or more executions would
be gathered for analysis purpose. The actual analysis or monitoring phase takes
place on these traces. This phase is additionally augmented to handle violations of
properties. The analysis or monitoring can be performed either offline or online.

 A Survey of Dynamic Program Analysis Techniques and Tools 115

An analysis is said to be online if the target system and the monitoring system are run
in parallel. But it may increase the cost. Choosing between the two, one should con-
sider whether the purpose of the analysis is to find error or to find and correct errors.
In the first case, offline analysis should be performed; while the latter should go for
the online analysis.

In the next sub-sections, we will study the main techniques for dynamic analysis of
programs. We have omitted the dynamic analysis of a system based on models (like
UML) because we are providing only those techniques which work on source code
itself or some form of source code like binaries or bytecode. The section ends with a
comparison of these techniques in Table 2.

2.1 Instrumentation Based

In this technique, a code instrumenter is used as a pre-processor to insert instrumenta-
tion code into the target program[27]. This instrumentation code can be added at any
stage of compilation process. Basically it is done at three stages: source code, binary
code and bytecode. Source code instrumentation adds instrumentation code before the
program is compiled using source-to-source transformation. It can use some meta-
programming frameworks like Proteus[47], DMS[3] etc. to insert the extra code au-
tomatically. These meta-programming frameworks provide a programming language
that can be used to define context sensitive modifications to the source code. Trans-
formation programs are compiled into applications that perform rewriting and instru-
mentation of source, which is given as input. Applying instrumentation to source code
makes it easier to align trace functionality with higher-level, domain-specific abstrac-
tions, which minimizes instrumentation because the placement of additional code is
limited to only what is necessary. The disadvantage is that it is target language depen-
dent and can also become problematic when dealing with specific language characte-
ristics, such as C/C++ preprocessing and syntactic variations.

Binary instrumentation adds instrumentation code by modifying or re-writing com-
piled code. This is done using specially designed tools either statically or dynamical-
ly. Static binary instrumentation involves the use of a set of libraries and APIs that
enable users to quickly write applications that perform binary re-writing. Examples of
such tools are EEL[28], ATOM[9] etc. Dynamic binary instrumentation (implemented
as Just-In-Time compilers) is performed after the program has been loaded into mem-
ory and just prior to execution using tools like MDL[22], DynInst[43] etc. MDL is a
specialized language that has two key roles. First, it specifies the code that will be
inserted into the application program to calculate the value of performance metrics.
This code includes simple control and data operations, plus the ability to instantiate
and control real and virtual timers. Second, it specifies how the instrumentation code
is inserted into the application program. This specification includes the points in the
application program that are used to place the instrumentation code. DynInst[43] is an
API that permits the insertion of code into a running program. Using this API, a pro-
gram can attach to a running program, create a new bit of code and insert it into the
program. The program being modified is able to continue execution and doesn’t need
to be re-compiled, re-linked, or even re-started[43]. Dynamic binary instrumentation

116 A. Gosain and G. Sharma

has the advantage over its static counterpart in that profiling functionality can be se-
lectively added or removed from the program without the need to recompile.

Bytecode instrumentation performs tracing within the compiled code. Again, it can
be static or dynamic. Static instrumentation involves changing the compiled code
offline before execution i.e., creating a copy of the instrumented intermediate code
using high level bytecode engineering libraries like BCEL[11], ASM[8], Javaas-
sist[10] etc. BCEL and ASM allow programmers to analyze, create, and manipulate
Java class files by means of a low-level API. Javassist[10], on the other hand, enables
structural reflection and can be used both at load-time or compile-time to transform
Java classes. The disadvantage here is that dynamically generated or loaded code
cannot be instrumented. Dynamic instrumentation, on the other hand, works when the
application is already running. There exist various tools for dynamic bytecode instru-
mentation like BIT[29], IBM's Jikes Bytecode Toolkit[23] etc. There also exist tools
which can provide both static and dynamic bytecode instrumentation. For example,
FERRARI[4] instruments the core classes in a Java program statically, and then uses
an instrumentation agent to dynamically instrument all other classes. This has the
advantage that no class is left without instrumentation. Nevertheless, bytecode in-
strumentation is harder to implement, but gives unlimited freedom to record any event
in the application.

2.2 VM Profiling Based

In this technique, dynamic analysis is carried out using the profiling and debugging
mechanism provided by the particular virtual machine. Examples include Microsoft
CLR Profiler[20] for .NET frameworks and JPDA for Java SDK. These profilers give
an insight into the inner operations of a program, specifically related to memory and
heap usage. One uses plug-ins (implemented as dynamic link libraries) to the VM to
capture the profiling information. These plug-ins are called as profiling agents and are
implemented in native code. These plug-ins access the profiling services of the virtual
machine through an interface. For example, JVMTI[44] is the interface provided by
JPDA. It is straightforward to develop profilers based on VM because profiler devel-
opers need only implement an interface provided by the VM and need not worry
about the complications that can arise due to interfering with the running application.
Benchmarks like SpecJVM [13] etc. are then used for actual run-time analysis. A
benchmark acts like a black-box test for a program even if its source code is available
to us. The process of benchmarking involves executing or simulating the behavior of
the program while collecting data reflecting its performance. This technique has the
advantage that it is simple and easier to master. One of the major drawbacks of this
technique is that it incurs high run-time overheads[4], [39].

2.3 Aspect Oriented Programming

Aspect-oriented programming (AOP)[26] is a way of modularizing crosscutting con-
cerns much like object-oriented programming is a way of modularizing common

 A Survey of Dynamic Program Analysis Techniques and Tools 117

concerns. With AOP, there is no need to add instrumentation code as the instrumenta-
tion facility is provided within the programming language by the built-in constructs.
AOP adds the following constructs to a program : aspects, join-point, point-cuts and
advices. Aspects are like classes in C++ or Java. A join-point is any well defined
point in a program flow. Point-cuts pick join-points and values at those points. An
advice is a piece of code which is executed when a join-point is reached. Aspects
specify point-cuts to intercept join-points. An aspect weaver is then used to modify
the code of an application to execute advice at intercepted join-points [21]. The AOP
paradigm makes it easier for developers to insert profiling to an existing application
by defining a profiler aspect consisting of point-cuts and advice. Most popular lan-
guages like C++ and Java have their aspect oriented extensions namely AspectC++
[42] and AspectJ [25] respectively. There also exist frameworks that use AOP to sup-
port static, load-time, and dynamic (runtime) instrumentation of bytecode [7].

Some problems encountered by AOP approaches are the design and deployment
overhead of using the framework[14]. AOP frameworks are generally extensive and
contain a variety of configuration and deployment options, which may take time to
master. Moreover, developers must also master another framework on top of the ac-
tual application, which may make it hard to use profiling extensively. Another poten-
tial drawback is that profiling can only occur at the join-points provided by the
framework, which is often restricted to the methods of each class, i.e., before a me-
thod is called or after a method returns.

Table 2. Comparison of Dynamic Analysis Techniques

 Dynamic Analysis Technique

 Instrumentation Based

VM Profiling
Based

AOP Based

 Static Dynamic

Level of Abstrac-
tion

Instruction/Bytecode Instruction/bytecode Bytecode Programming
Language

Overhead Runtime Runtime Runtime Design and
deployment

Implementation
Complexity

Comparatively Low High High Low

User Expertise Low High Low High

Re-compilation Required Not Required Not Required Required

Application-specific events occurring within a method call therefore cannot be pro-
filed, which means that non-deterministic events cannot be captured by AOP profi-
lers[21]. Still, AOP is getting popular to build dynamic analysis tools as it can be
used to raise the abstraction level of code instrumentation and incurs less runtime
overhead [18].

118 A. Gosain and G. Sharma

3 Dynamic Analysis Tools

Dynamic analysis tools have been widely used for memory analysis [35], [38], [36],
[40], [30], [37], [12], invariant detection [16], [19], deadlock and race detection[35],
[40], [6] and metric computation[15], [41]. These tools are being used by companies
for their benefits. For example, Pin[40] is a tool which provides the underlying infra-
structure for commercial products like Intel Parallel Studio suite[49] of performance
analysis tools. A summary of dynamic analysis tools is provided in Table 3.

Table 3. Dynamic Analysis Tools

Technique Tool Language Type of Dynamic Analysis done

C

ac
he

 M
od

el
lin

g

H
ea

p
A

llo
ca

tio
n

B
uf

fe
r

O
ve

rf
lo

w

M
em

or
y

L
ea

k

D
ea

dl
oc

k
D

et
ec

tio
n

R
ac

e
D

et
ec

tio
n

O
bj

ec
t

L
if

eT
im

e
A

na
ly

si
s

M
et

ri
c

C
om

pu
ta

tio
n

In
va

ri
an

t D
et

ec
tio

n

Instrumentation
Based

Daikon C, C++ ✓

 Valgrind C, C++ ✓ ✓

 Rational
Purify

C, C++,
Java

 ✓

 Parasoft
Insure++

C, C++ ✓ ✓

 Pin C ✓

 Javana Java ✓ ✓

 DIDUCE Java ✓

AOP Based

DJProf Java ✓ ✓

 Racer Java ✓

VM Profiling
Based

Caffeine Java ✓

 DynaMetrics Java ✓

 *J Java ✓

 JInsight Java ✓ ✓ ✓

 A Survey of Dynamic Program Analysis Techniques and Tools 119

Valgrind[35] is an instrumentation framework for building dynamic analysis tools.
It can automatically detect many memory management and threading bugs, and pro-
file a program in detail. Purify[38] and Insure++[36] have similar functionality as
Valgrind. Whereas Valgrind and Purify instrument at the executables, Insure++ di-
rectly instruments the source code. Pin[40] is a tool for dynamic binary instrumenta-
tion of programs. Pin adds code dynamically while the executable is running. Pin
provides an API to write customized instrumentation code (in C/C++), called Pin-
tools. Pin can be used to observe low level events like memory references, instruction
execution, and control flow as well as higher level abstractions such as procedure
invocations, shared library loading, thread creation, and system call execution.

Javana [30] runs a dynamic binary instrumentation tool underneath the virtual ma-
chine. The virtual machine communicates with the instrumentation layer through an
event handling mechanism for building a vertical map that links low-level native in-
struction pointers and memory addresses to high-level language concepts such as
objects, methods, threads, lines of code, etc. The dynamic binary instrumentation tool
then intercepts all memory accesses and instructions executed and provides the Javana
end user with high-level language information for all memory accesses and natively
executed instructions[30].

Daikon[16] and DIDUCE[19] are two most popular tools for invariant detection.
The former is an offline tool while the latter is an online tool. The major difference
between the two is that while Daikon generates all the invariants and then prunes
them depending on a property; DIDUCE dynamically hypothesizes invariants at each
program point and only presents those invariants which have been found to satisfy a
property. Another major difference is that Daikon collects tracing information by
modifying the program abstract syntax tree, while DIDUCE uses BCEL to instrument
the class JAR files.

*J [15] and DynaMetrics[41] are tools for computing dynamic metrics for Java.
While *J relies on JVMPI (predecessor of JVMTI but now rarely used) interface for
metrics computation, DynaMetrics uses JVMTI interface. Another major difference
between the two is that *J computes dynamic metrics specifically defined by its au-
thors for Java whereas DynaMetrics computes major dynamic metrics from various
dynamic metrics suites available in literature. JInsight [12] is used for exploring run-
time behaviour of Java programs visually. It offers capabilities for managing the
information overload typical of performance analysis. Through a combination of vi-
sualization, pattern extraction, interactive navigation, database techniques, and task-
oriented tracing, vast amounts of execution information can be analyzed intensively.
Caffeine [31] is a tool that helps a maintainer to check conjectures about Java pro-
grams, and to understand the correspondence between the static code of the programs
and their behavior at runtime. Caffeine uses JPDA and generates and analyzes on-the-
fly the trace of a Java program execution, according to a query written in Prolog.
DJProf[37] is a profiler based on AOP which is used for the analysis of heap usage
and object life-time analysis. Racer[6] is a data race detector tool for concurrent pro-
grams employing AOP. It has specific point-cuts for lock acquisition and lock release.
These point-cuts allow programmers to monitor program events where locks are

120 A. Gosain and G. Sharma

granted or handed back, and where values are accessed that may be shared amongst
multiple Java threads.

4 Conclusion

Dynamic analysis has acquired a great importance in recent years because of its abili-
ty to determine run-time behavior of programs precisely. This paper provided the
details of the techniques and tools of dynamic analysis. An attempt is made to high-
light the strength and weaknesses of each technique. Aspect oriented techniques have
got an edge over other techniques and are being emphasized for dynamic analysis of
programs.

References

1. Ball, T.: The concept of dynamic analysis. In: Wang, J., Lemoine, M. (eds.) ESEC 1999
and ESEC-FSE 1999. LNCS, vol. 1687, p. 216. Springer, Heidelberg (1999)

2. Ball, T., Larus, J.R.: Efficient path profiling. In: Proceedings of MICRO 1996, pp. 46–57
(1996)

3. Baxter, I.: DMS: Program Transformations for Practical Scalable Software Evolution. In:
Proceedings of the 26th International Conference on Software Engineering, pp. 625–634
(2004)

4. Binder, W., Hulaas, J., Moret, P., Villazón, A.: Platform-independent profiling in a virtual
execution environment. Software: Practice and Experience 39(1), 47–79 (2009)

5. Binkley, D.: Source Code Analysis: A Road Map. Future of Software Engineering (2007)
6. Bodden, E., Havelund, K.: Aspect-oriented Race Detection in Java. IEEE Transactions on

Software Engineering 36(4), 509–527 (2010)
7. Boner, J.: AspectWerkz - Dynamic AOP for Java. In: Proceeding of the 3rd International

Conference on Aspect- Oriented Development (AOSD 2004), Lancaster, UK (2004)
8. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to implement

adaptable systems. In: Adaptable and Extensible Component Systems, Grenoble, France
(2002)

9. Buck, B., Hollingsworth, J.K.: An API for Runtime Code Patching. International Journal
of High Performance Computing Applications, 317–329 (2000)

10. Chiba, S.: Load-time structural reflection in java. In: Bertino, E. (ed.) ECOOP 2000.
LNCS, vol. 1850, p. 313. Springer, Heidelberg (2000)

11. Dahm, M.: Byte code engineering. In: Java-Information-Tage(JIT 1999) (1999),
http://jakarta.apache.org/bcel/

12. Zheng, C.-H., Jensen, E., Mitchell, N., Ng, T.-Y., Yang, J.: Visualizing the Execution of
Java Programs. In: Diehl, S. (ed.) Dagstuhl Seminar 2001. LNCS, vol. 2269, pp. 151–162.
Springer, Heidelberg (2002)

13. Dieckmann, S., Hölzle, U.: A study of the allocation behavior of the SPECjvm98 Java
benchmarks. In: Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 92–115. Sprin-
ger, Heidelberg (1999)

14. Dufour, B., Goard, C., Hendren, L., de Moor, O., Sittampalam, G., Verbrugge, C.: Measur-
ing the dynamic behaviour of AspectJ programs. In: Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages and Applications, pp. 150–169.
ACM Press (2004)

 A Survey of Dynamic Program Analysis Techniques and Tools 121

15. Dufour, B., Hendren, L., Verbrugge, C.: *J: A tool for dynamic analysis of Java programs.
In: Proc 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 306–307. ACM Press (2003)

16. Ernst, M.D.: Dynamically Discovering Likely Program Invariants. (PhD Dissertation),
University of Washington, Dept. of Comp. Sci. & Eng., Seattle, Washington (2000)

17. Ernst, M.D.: Static and Dynamic Analysis: Synergy and Duality. In: Proceedings of the 5th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (2004)

18. Gupta, V., Chhabra, J.K.: Measurement of Dynamic Metrics using Dynamic Analysis of
Programs. In: Applied Computing Conference, Turkey (2008)

19. Hangal, S., Lam, M.S.: Tracking Down Software Bugs using Automatic Anomaly Detec-
tion. In: ICSE 2002 (2002)

20. Hilyard, J.: No Code Can Hide from the Profiling API in the.NET Framework 2.0. MSDN
Magazine (January 2005),
http://msdn.microsoft.com/msdnmag/issues/05/01/CLRProfiler/

21. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: Lieberherr, K. (ed.) Aspect-
oriented Software Development (AOSD 2004). ACM Press (2004)

22. Hollingsworth, J.K.: MDL: A language and compiler for dynamic instrumentation. In:
Proceedings of International conference on Parallel architecture and compilation tech-
niques (1997)

23. IBM Corporation. Jikes Bytecode Toolkit (2000),
http://www-128.ibm.com/developerworks/opensource/

24. Jackson, D., Rinard, M.: Software Analysis: A Road Map. IEEE Transaction on Software
Engineering (2000)

25. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Over-
view of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–
355. Springer, Heidelberg (2001)

26. Kiczales, G., et al.: Aspect-oriented programming. In: Proc of the 11th European Confe-
rence on Object-Oriented Programming, Finland. LNCS, vol. 1241, pp. 220–242. Springer
(1997)

27. Larus, J.R., Ball, T.: Rewriting executable to measure program behavior. Software:Practice
and Experience 24(2), 197–218 (1994)

28. Larus, J.R., Schnarr, E.: EEL: Machine independent executable editing. In: PLDI 1995
(1995)

29. Lee, H.B., Zorn, B.G.: BIT: A tool for instrumenting Java bytecode. In: Proceedings of
USENIX Symposium on Internet Technologies and Systems, pp. 73–82 (1997)

30. Maebe, J., Buytaert, D., Eeckhout, L., De Bosschere, K.: Javana: A System for Building
Customized Java Program Analysis Tools. In: OOPSLA 2006 (2006)

31. Mines de Nantes, E.: No Java without Caffeine. In: ASE 2002 (2002)
32. Mock, M.: Dynamic Analysis from the Bottom Up. In: 25th ICSE Workshop on Dynamic

Analysis (2003)
33. Naik, M.C.: A static and dynamic program analysis framework for Java (2010),

http://chord.stanford.edu/
34. Nimmer, J.W., Ernst, M.D.: Automatic generation and checking of program specifications.

Technical Report 823, MIT Lab for Computer Science, USA (2001)
35. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary in-

strumentation. In: Proc. of ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI (2007)

122 A. Gosain and G. Sharma

36. Parasoft Inc. Automating C/C++ Runtime Error Detection With Parasoft Insure++. White
paper (2006)

37. Pearce, D.J., Webster, M., Berry, R., Kelly, P.H.J.: Profiling with AspectJ. Software: Prac-
tice and Experience (2007)

38. Rastings, R., Joyce, B.: Purify: Fast Detection of Memory Leaks and Access Errors. Win-
ter Usenix Conference (1992)

39. Reiss, S.P.: Efficient monitoring and display of thread state in java. In: Proceedings of
IEEE International Workshop on Program Comprehension, St. Louis, MO, pp. 247–256
(2005)

40. Skatelsky, A., et al.: Dynamic Analysis of Microsoft Windows Applications. In: Interna-
tional Symposium on Performance Analysis of Software and System (2010)

41. Singh, P.: Design and validation of dynamic metrics for object-oriented software systems.
(PhD Thesis), Guru Nanak Dev University, Amritsar, India (2009)

42. Spinczyk, O., Lohmann, D., Urban, M.: Aspect C++: an AOP Extension for C++. Software
Developer’s Journal, 68–76 (2005)

43. Srivastava, A., Eustace, A.: ATOM: A system for building customized program analysis
tools. SIGPLAN Not 39(4), 528–539 (2004)

44. Sun Microsystems Inc. JVM Tool Interface, JVMTI (2004),
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
index.html

45. Sun Microsystems Inc. Java Virtual Machine Profiler Interface, JVMPI (2004),
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/

46. Sun Microsystem Inc. Java Platform debug Architecture (2004),
http://java.sun.com/javase/6/docs/technotes/guides/jpda/

47. Waddington, D.G., Yao, B.: High Fidelity C++ Code Transformation. In: Proceedings of
the 5th Workshop on Language Descriptions, Tools and Applications, Edinburgh, Scot-
land, UK (2005)

48. Waddington, D.G.: Dynamic Analysis and Profiling of Multi-threaded Systems. In: Taiko,
P.F. (ed.) Designing Software-Intensive Systems: Methods and Principles. Information
Science Reference Publishing (2008) ISBN 978-1-59904-699-0

49. https://software.intel.com/en-us/intel-parallel-studio-xe

	A Survey of Dynamic Program Analysis Techniques and Tools
	1 Introduction
	2 Dynamic Analysis Techniques
	2.1 Instrumentation Based
	2.2 VM Profiling Based
	2.3 Aspect Oriented Programming

	3 Dynamic Analysis Tools
	4 Conclusion
	References

