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Abstract— Test Design – how test specifications and test 

cases are created – inherently determines the success of 

testing. However, test design techniques are not always 

properly applied, leading to poor testing. 

We have developed an analysis method based on 

identifying mistakes made when designing the test cases. 

Using an extended test case template and an expert review, the 

method provides a systematic categorization of mistakes in the 

test design. The detailed categorization of mistakes provides a 

basis for improvement of the Test Case Design, resulting in 

better tests.  In developing our method we have investigated 

over 500 test cases created by novice testers. In a comparison 

with industrial test cases we could confirm that many of these 

mistake categories remain relevant also in an industrial 

context. 

Our contribution is a new method to improve the 

effectiveness of test case construction through proper 

application of test design techniques, leading to an improved 

coverage without loss of efficiency. 

Keywords: Test Design, Test Case, Improvement Method, Test 

Techniques, Efficient Testing   

I.  INTRODUCTION 

In academia, a test design technique is assumed to be 
known when published, and thus the implementation or 
interpretation of a technique is inherently assumed to be 
correct. Due to the vast number of publications and existing 
interpretations, in addition to a large overlap of the 
different test design techniques, this body of knowledge is 
far from being well-defined enough to be an unambiguous 
source for use by the practitioners. From an industrial 
perspective, test design is paramount since the quality of 
the test cases substantially affects how well the system is 
tested, what failures (faults) will be found and what 
coverage can be achieved.  

Our main research questions in this study is “if there are 
systematic mistakes testers do frequently during test case 
construction”, which leads to reduced efficiency and 
effectiveness of the testing efforts.  By systematic we mean 
repeating and frequent pattern occurring for more than 10 
persons and more than 50 test cases in the context of the 
study.  In an industrial setting the number should probably 
be lower, e.g.  5 persons.   

The strength of our proposal lies in assessing the 
likelihood of making a series of mistakes, the penetration of 
mistakes made, and the identification of consequences 
thereof – which all are aspects that enable a better defined 
test design process, resulting in improved test cases.  

We have collected empirical data during test case 
creation, formulated a theory of systematic mistakes, and 
compared our theory on existing test cases written in 
industry. Our aim is to define distinguishing features of the 
test case design process that can be applied generically to 
different types and domains of systems [7], [9].  

Our claim is that a deeper understanding of mistakes that 
are made during test case construction, and conscious and 
directed efforts in avoiding them, will lead to substantially 
better test cases. This paper is structured as follows: First 
we provide an overview of test design, including 
terminology and related work. Then we present the study 
from where we have collected the data. Section IV contains 
a detailed description of our categories of mistakes.  In 
Section V, we compare our categories with industrial test 
cases. Section VI presents our proposal for improving test 
case design in practice. Finally, we conclude with threat 
analysis, discussion and further work. 

II. OVERVIEW OF TEST DESIGN 

Test design describes the phase in a process, where test 
specifications are written, and a resulting test procedure or 
test cases are created. Following IEEE Standard 829 [1] 
(1998 version) a Test Design Specification should consist 
of: 

• Test Case Specification Identifier; 

• Test Items; (references for traceability) 

• Input specifications & Output specifications; 

• Environmental needs; 

• Special procedural requirements; 

• Inter-case dependencies. 
This specification is straightforward, but does not include 

the bookkeeping information normally used in industry, 
such as information about version handling.  

A test case is the result of applying a test (design) 
technique to a specific software system. The test technique 
delimits the type of test cases that can be created, according 
to a concept, approach or selection. In industry, there is 
typically no extra level of documentation for the test 
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procedure. The test case includes all needed information 
and is the executable similar to the test procedure, 
regardless if the test case should be executed manually or 
by a tool.  

A test case should be repeatable by anyone (yielding the 
same result) and thus measurable, in the sense that it should 
be possible to determine if the test passed or failed. The test 
procedure in the standard also calls for a wrap-up that 
describes the actions necessary to restore the environment 
(referred to as clean-up in our study).  

The related work deals mainly with software faults/ 
failures and making improvements on how to avoid them 
[6][8]. Improvement models as a general modus operandi is 
found in e.g. [3]. Particular work on improving the test 
design phase and assessing the test cases in this manner is, 
to our knowledge, new. 

III. ORIGIN AND DESIGN OF STUDY 

Our overall aim is to improve the industrial testing 
practice. We are focusing on the test design phase, and on 
the efficiency, effectiveness and applicability of the 
techniques used in this phase. 

A. Process of this Study 

The process of data collection for this study is described 
in Figure 1. The first phases, I and II, were set up for 
another study (hence are shown by dashed boxes), where 
the goal was to understand the know-how in industry about 
test design techniques and their usage.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Process of the Study 

A simple open source system, Buddy [5] was used, since 
it was intuitive to learn and small in size with a limited 
number of functions. The system handles a personal 
budget, creating accounts, making budgets, handling cash 
withdrawal and deposits, etc. and is very rudimentary – 
handling all input as strings, except some numerical fields. 
We believe that any system with a set of test cases can be 
used to replicate this study, as long as the know-how of the 
system does not in itself become a hurdle – which will 

otherwise make the experiment unmanageably time-
consuming.  

In phase II, all subjects were from industry (both testers 
and developers), including some with more than 30 years 
experience. As a part of this study, the subjects were asked 
to write test cases on a blank paper (since we assumed their 
experience in writing test cases would be sufficient).  

Observations from this study include that the quality of 
the described test cases was in general very poor, even if 
our research questions were answered. We saw this as a 
result of the subjects being time constrained, but noticed 
that the test case writers were very brief in their 
descriptions. We also observed that since no template was 
given, the variation of detail in the produced test cases was 
large – a few wrote a much detailed step-by step 
description whereas most test cases were written rather 
schematically. These observations left us wondering, 
whether the underlying problem was the inherent 
complexity of specific test design techniques, or if it was 
due to a lack of know-how of the test design techniques, or 
if it was really just a case of poor test case writing. To 
identify and analyze the main causes of the observed poor 
test designs, we decided to conduct a large-scale 
experimental study. However, since we were unsure about 
how much the knowledge of industrial testers will affect 
the results of such study. Due to practical reasons, we 
decided to perform this study focusing on novice testers in 
an academic setting. As our study turned out, studying 
mistakes patterns are much easier if they mistakes are made 
frequently.   

This main empirical study was conducted as an element 
of a Master-level testing course at Mälardalen University. 
In preparing this study (Phase IV), which focused on the 
understanding of test techniques and the ability to apply 
them, we used the lessons learned from phase II that in 
order to get properly documented test cases a test case 
template is needed (phase III in Figure 1).  

B. Empirical Study and Data Collection 

The primary goal was to teach the students how to write 
test cases in practice, transforming their theoretical know-
how into useful test cases. There were about 50 students 
participating in this study, with the target of creating 10 test 
cases each. Not all students delivered, and not all test cases 
were written. The students can be considered novices in 
testing real software. The students were then asked to do a 
rather controlled exercise to apply their theoretical 
knowledge. The same system, Buddy [5], was used. Since 
it is easy to understand the basic functions of such a 
system, no requirement specification was available to the 
students, who had to use their own judgment to create 
reasonable test cases using different test techniques. Each 
student was asked to use a series of test techniques and fill 
in a template. The template was explained, and 
clarifications provided whenever necessary. Students were 
particularly asked to be innovative – providing new and 
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novel test cases – something that would also give them 
extra credits.   

C. Test Case Template 

In this study we used a test case template based on IEEE 
Standard 829 [1] with some additional fields (marked by *). 
The template contained the following fields: 

• Test case name (& number)  

• Test suite, (version) 

• Test technique used * 

• Time to create the test case * 

• Version or unique reference to:  
o test items (test object lists, test artifacts, test 

plans etc). 
o software under test 
o project & product 
o test tool 
o test environment (configuration) 
o test specification (version) 
o requirement (version) 

• Assumptions (pre-requisites) * 

• Starting position of test case  (implicit, the inter-
dependencies) 

• Input specification (input analysis, and selected 
targeted input) * 

• Step-by-step description of actions (procedure) of 
actual test case 

• Output specification (observable outcome to base 
evaluation on) 

• Clean-up including side-effects (post processing) 
after test case execution 

The test case template along with the related experimental 
data for this study is available in [10]. The aim was to 
create industrial-like test cases, and the template helped the 
students describe the test cases with high readability. Time 
to execute (not create) the template is used in industrial test 
cases, but since we used trivial test cases for the students, 
we thought the creation time would be more interesting. 
Most students ignored or defaulted this category instead of 
measuring it. For the field “assumption”, the tester was 
asked to provide information on what (s)he believed to be 
the relevant system response to the test case, since there 
were no requirements or other specifications available for 
the system under test. This field was intended to provide 
information that enables definition of a suitable 
verdict/result.  

In an implementation, the starting point of execution is 
particularly interesting – but many testers code their test 
cases in a particular order, assuming that this order is 
followed during test execution. This creates dependence 
between test cases, which is undesirable since a test case 
should always be self-contained. Defining intercase 
dependencies is a requirement in the standard, but instead 
we required the specification of a starting position (which 

indirectly indicates if the test case is dependent – or self-
contained).  

D. Considered Test Design Techniques 

In this study, the following test design techniques were 
explicitly taught in theory, including some simple 
examples:  

• The positive test case (valid input data)  (Pos T) [15], 
[12], [13], [21]  

• The negative test case (invalid input data) performed 
twice (Neg1 + 2) [14], [17], [19], [21]  

• Magic input test case (0, -, float or other typical fault 
invoking data) [4]  

• Equivalence partitioning technique (EP), [11] also 
referred to as Category Partitioning  

• Boundary Value Analysis (BVA) [4], [11], [15] 

• State-transition – preparing the model for the test 
case (based on the system) (STModel) [20] 

• Use State-transition, and make the transition in 3 
steps in the test case.  (Steps can be transformed into 
a table.) (STable) 

• Permutation of transitions/steps (identifying a 
location where that is possible!) [6] 

• Combination techniques: State-transition + input 
analysis (Add EP-classes) (Comb) 

IV. SYSTEMATIC MISTAKES ANALYSIS 

The data collected in the above study was aggregated, and 
treated statistically, as indicated in Figure 1 (phase V). A 
bit surprised by the rather large amount of test cases 
lacking a sufficient level of quality, we then tried to 
identify what had gone wrong. After an iterative process of 
identification, grouping and refinement, some patterns that 
seems to posses the same qualities emerged. Based on our 
findings we formulated our theory on systematic mistakes 
presented in this section.  

We had to define a way to determine the quality of each 
test case as a matter of grading. We noticed that the 
students had a strong tendency to repeat mistakes. If they 
did miss one category, they probably did that for most of 
the test cases. Then we could a see pattern among many of 
the students, on why they failed. After this analysis the 
structure emerged as the following list of categories, each 
indicating a lack of understanding why the corresponding 
knowledge is important for test case design: 

A. Understanding instructions /level of details  
B. Understand the purpose of the system and current 

level and context of testing 
C. Understanding test design techniques and how to 

apply them 
D. Assumptions, e.g. regarding correctness and 

completeness of specifications 
E. Elaborate test case creation, and not only using the 

most obvious test case or input 
F. Define a clear starting position for the test case 
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G. Make specifications of valid and invalid inputs  
H. Step-by-Step description of test case execution  
I. Test case evaluation (steps to take to make a clear 

comparison with expected result should be clear)  
J. Clean-up after test case, repeatability 

In the following subsections, we will for each of these 
categories, present the data supporting our claims, the 
degree of failure for novice testers, and discuss some of the 
consequences of failure. In Section V we further relate our 
findings to the quality of a set of industrial test cases and 
enhance this categorization.  

A. Understanding Instruction/Level of Detail 

In test design, frequently imperfect specifications need to 
be translated to useful test cases. This process is the same 
as implementing a code or design based on requirements. In 
complex systems, the information in the requirements is 
often insufficient, and additional information must be 
gathered from different sources, but also be drawn from the 
testers or developers experience on how the system and 
software behaves. A tester should be able to infer exactly 
what is meant, and in a detailed level follow instructions 
and provide enough information, so that the test case is 
unambiguous and can be repeated by any other tester. 

Observations: 33% of the subjects did not read 
instruction on delivery of test case (naming, or delivery 
faulty) and 73% did not complete the entire template.  

Discussion: Not being able to read an instruction is in 
itself a failure, which could have many reasons. Here we 
assume that the students were either not interested or did 
not think it would matter, or just did not care. Examples of 
mistakes are: 

• Delivering the test cases in one file instead of as 
separate test cases uniquely named 

• Wrongly name the test cases against instruction 

• Not filling in information as required by instruction 
If it had been a recruitment situation, people would 

probably not get a job as a tester based solely on the lack of 
attention to detail. In general, failing to provide detailed 
descriptions seems to be a human fallacy – where we in 
general are much too imprecise to make coding and testing 
a straightforward matter. Often the main solution is to 
provide more details – and by doing so, minimize the 
opportunity for multiple interpretations. The consequences 
here are often failures based on misunderstandings, or that 
the task of test case writing cannot be completed due to 
insufficient information. We can see that the imprecise 
level of detail is often generic in many of the categories 
used. The problem was systematic to a person, and not very 
varying with each test case, but we could also see 
deterioration in the test cases and also a strong relation to 
the success of applying the technique.  

B. Understanding the Purpose of the System and Current 

Level and Context of Testing 

Understanding the purpose of the system, and current 
level and context of the system is related to the abstraction 
levels of the system. This is probably the most fuzzy and 
hard to grasp concept of a software system when it comes 
to testing and seems to be an understanding that people 
acquire after some years working with the system. The 
system impact could be based on the history of the system, 
for instance how well documented the original 
requirements are, and how the history of the test has been. 
Who has been writing the test cases? What level were they?  

This impacts how data is stored and handled, and also 
how the test case construction looks like. Is a test case 
written directly in code – or is it textual and manually 
executed? Is the test case hidden in a tool, a model or are 
there many documents and specifications to be read about 
what is expected? How do you actually learn about the 
system? Are there many similar systems on the market? 
Are you as a tester also a typical user – or is the system 
where you test a constructed artificial interface? System 
impact is important in many aspects for understanding 
levels and context e.g. what visibility of the domain is 
possible, what software concept is used, and how that does 
impact the test approach.  

Observations: Measuring this comprehension is rather 
difficult. We checked how many had understood that all 
input in the system were string-based, and did not create 
test cases that would assume the test should only handle 
digits and letters. As much as 80% of the students failed on 
this account, which led to a majority of test cases failed. 

Discussion: By failing to understand the right context of 
the system, the likely outcomes are that the important test 
cases are missed, the focus of the test is outside the scope 
or at the wrong abstraction level of the system, and that the 
problems reported might be unimportant.  

C. Understanding Test Design Techniques and How to 

Apply Them 

One can discuss the test design techniques and details, 
overlap and variants, in depth. The first and obvious level is 
to understand what the theory is, and then you need to be 
able to apply the technique on the specific case in your 
system, meaning, finding a location or situation where you 
can apply the technique. Most test design techniques are 
related to input, some are related to path of execution, and 
few are related to order of execution. Also combinations of 
techniques are possible. Depending on how, and sometimes 
what type of system you apply it to, they carry different 
names. When looking at variable input given, the best way 
to get a good utilization of test design techniques is to 
define the input domain and divide it into groups and 
subgroups. A good basic approach to have in mind is that 
the entire ASCII-table should be taken into account and to 
that a variety of different sizes should be submitted. This 
basic approach is normally documented in the test 
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specification, and should cover all forms of valid and 
invalid input, whereas the specific test case should select a 
specific executable.   

Observations: The success of using various test design 
techniques by the students is shown in Figure 2 
(abbreviations are defined in Section III, D). The positive 
test case technique (e.g. giving valid input), was the most 
common technique performed, and also had the highest 
success in producing an executable test case. Only 10 % 
did honor that for BVA all three data must be executed, 
even if this was highlighted during classroom teaching.  

Discussion: The most common mistake seems to be 
related to understanding what is required for each 
technique, and also what input and boundaries really mean 
in the context of this system. One mistake is that students 
confused negative (invalid) input to using negative 
numbers. Another mistake is to confuse boundary values to 
negative test cases, specifically, input outside the boundary. 
In reality, there are probably many more subgroups, but 
this needs further analysis.  The main goal is often to create 
a test case for each input-class or sub-group.  One can 
define each input class or sub-group assuming that the 
software treats the input equally within the class (but it 
might not be true!). A consequence of this is that there 
might be a series of variants of test cases, where the input 
varies (and accordingly its output), and as a result there will 
be a number of variants of the same test cases existing. In 
addition, if a boundary exists, it is valuable to target that 
immediately (three test cases – or one with three types of 
input). Boundaries are more or less visible at different 
levels in the software system, but should always be a target 
to test – since it is a known source of problems.  

 
Figure 2.  Test Design Techniques % Full and partial success in 

constructing executable test cases in the technique. 

When using test design techniques to create test cases, the 
first aim should be to create test cases to gain as much 
coverage [21] as possible, by e.g. varying the input. This 
has a higher likelihood of finding faults. Another technique, 
permutation, suggests changing the order of execution of 
different test cases, or changing order between steps within 
a test case. Permutation mainly targets resource dependent 

faults. Finally, the context could differ for the same 
execution – for example if different security roles exist; or 
depending on whether other parts of the software are 
present or not. This means the same test case can have 
totally different execution paths and results, depending 
largely on the context of the execution of that test case. 

D. Assumptions 

This category relates to on which assumptions we judge 
that a test case has passed or failed. An experienced tester 
is likely to make judgments on correctness and 
completeness of all aspects of the system. In the case of 
judging a faulty requirement, experts would be more 
inclined to assume that the requirement is incorrect and 
should be changed. The novice would assume that what is 
written is almost always correct, and design the test case 
based on this faulty assumption. In this case, most students 
did not accept the system, and defined assumptions outside 
its current behavior. 

Observations: More than 50% of students failed to create 
an assumption that matched their expected result. Since 
almost all students failed to identify what to expect based 
on an understanding of the system, they failed making 
realistic assumptions in relation to that.  

Discussion: In this case, inventing an assumption became 
totally unrealistic. We decided this was more a 
consequence of not understanding the particular context of 
the system, rather than making a fault assumption. In fact, 
here we were more interested in understanding how the 
student could postulate a defined truth – what should be 
valid about the system, since no requirements or documents 
existed to explain what would considered being a correct 
system behavior.  

E. Only Using the Most Obvious Test Case or Input 

During analysis of the several hundreds of test cases, we 
were interested in seeing the variety of test cases created. 
We particularly asked the students to be creative in 
inventing valid test cases for the system.   

Observations: Only a few individuals (less than 5%) had 
any variation within the system, or attempted anything 
innovative with their test cases. The student most often 
tested the function create account and the variation was 
very limited (mostly names and numbers were tested). The 
second most common test was looking at dates. A few did 
attempt to look at some transactions which led to more 
meaningful tests with slightly higher coverage.  

Discussion:  This mistake will result in systems where 
the obvious aspects are probably the only parts of the 
software which are tested, leaving many aspects of the 
software untested, and leading to less robust systems. In 
fact, this is an ineffective way of testing software. Doing a 
transaction test, will additionally test that the accounts must 
be created and can be used. This is a much higher level of 
test approach, than checking that the software can store a 
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date, which in this case was a string. This type of tests had 
little impact on the main functions of the system. 

F. Starting Position for the Test Case 

A common mistake is to only describe where the starting 
position of the test case is, i.e., not being specific on how to 
get to the starting position or which actions has to be taken 
before; or just assuming that a particular location is obvious 
from the test case context,  or not saying anything at all.  

Observations: 73% of the students failed on explaining 
an unambiguous starting position.   

Discussion: This would of course be easily detected 
during automation of the test case that information is 
insufficient to identify where the test case should start.   
The most common assumption for this exercise, which 
targets test of a very small program, is assuming that 
information such as “Start the program” is enough. In this 
case (and since we used an old version of the software), one 
has to avoid downloading the new version automatically, 
which none of the students remarked in their starting 
position. Secondly, one could benefit from describing 
exactly what to invoke and what part of the software state 
should be available.  A starting position defines if the test 
case is independent or has intercase dependencies. A 
consequence if you do not create restart options for your 
software is that if a failure happens, the execution might get 
stuck, and will not be able to continue on to the next test 
case. The investment done in the test cases are better 
catered for if the order of the test cases can be swapped 
around, especially if the software execution is in any way 
handling or impacted by resource factors in the system, e.g. 
timing, buffer-sizes, priority queues, caching etc. The aim 
is of course still to minimize the overlap in repeating 
starting positions, and thus prepare a set of starting 
positions. This is a part of the test architecture that is 
needed in the testware.  

G. Specification of Valid and Invalid Inputs  

Defining input classes in the test/verification specification 
simplifies the use of different test design techniques, and 
the input selection of the test case. This is an efficient way 
to capture the entire input domain, and also prepare for a 
series of test design techniques. At the same time, one 
could introduce variables to represent inputs, thereby 
paving the way for test automation. It might be initially 
difficult to define what an input is in this context, since 
clicking on a predefined menu-item could at another 
abstraction-level be regarded as input. Here we define input 
as something you enter in a field that can vary the 
execution path. We are particularly excluding pre-defined 
clicks or selections of menus (or commands). The best 
option for this type of user input is e.g. the ASCII- table, 
including digits and letters in addition to other special 
characters. In addition, a varied size of the input (defined in 
range) should be explored.  

Observation: This proved to be very difficult for the 
students, and only 30 % of the students were even near the 
idea intended with input analysis. The students were in 
general better at providing valid input than making an 
analysis on invalid input. None succeeded to grasp the 
entire input domain.  

Discussion: The consequences of poor input analysis are 
several. First, the test case created becomes ineffective, 
since it cannot be reused with many different inputs that 
would increase the coverage. Secondly, the analysis 
enables better usage of test design techniques and thus 
better automation of the test case execution. This is done 
using input as a variable saving serious space, instead of 
hard-coding input data.  In the context of the experiment, 
the problem might be how this concept was taught and 
clearly theory alone was not sufficient. 

H. Step-by Step Description 

A test case procedure is often described as a set of 
actions, with a step-by-step description of actions (and 
maybe also intermediate responses). To make the execution 
path uniquely defined, the test case must often be described 
in small and very detailed steps, exactly the same way as 
writing code. Otherwise pseudo-code could be an 
intermediate step, but one can rather question if working 
with testing software should be done by people with no 
knowledge of software or coding. The task would be to 
make clear what information is needed in the code 
procedure or step-by-step description – and what are 
comments, or header/book-keeping information about the 
code. The latter is an absolute necessity to be able to handle 
the test case.  

Observations: 47 % of the students provided insufficient 
information and detail to provide steps that could be 
unambiguously followed by another human, or required 
mind-leaps that is needed to be added when creating a 
program for execution.   

Discussion: We could see that beginners (not thinking in 
code) are writing too little information in the test case. 
Most common mistake is missing or too abbreviated 
information, which probably makes the automation of a 
manual test case costly.  

The consequence of missing specific detail in the step, 
e.g. what particular values that should be used, is that the 
test case execution path is not uniquely identifiable and the 
execution might not be possible to recreate, thus if a fault is 
found it could be hard to recreate the test case. 

I. Test Case Evaluation 

The main purpose of test execution is to get a 
measurement of the software quality, by combining a large 
series of test case evaluation results. To be a useful test 
case, it must be possible to evaluate the outcome of the test 
case to the defined criteria. For systems lacking these 
criteria the concept of “Assumption” is useful.  To 
determine the verdict of the test case one must describe the 

75



 

expected result or visible outcome, so that the outcome of 
the test case could be compared with it. This could result in 
a series of steps, comparing logs, or showing that certain 
action took place.  

Observations: As many as 28% missed giving evaluation 
at all, and about 50% of the students could not formulate a 
precise evaluation that would determine the outcome.  

Discussion: In our system, when an account is created, it 
is not enough to make sure that the test execution did not 
encounter a crash, fault or problem when pressing save 
after filling in an account name. One must also perform the 
action of retrieving the account name into a visible state, 
e.g. create a listing of account names. This also means that 
the test case for checking that listing must be working. 
Another way is to go through the back door, and check in 
the data base that there is storage in the correct table with 
the saved name. Both must be precisely described. These 
sorts of events create problems when designing and testing 
the system. If the name is not visible in the list, is it the list 
function or the store function that is malfunctioning? In 
systems there are often multitudes of ways to check a 
specific aspect. In our system, one can try and repeat 
exactly the same test case immediately. The next time the 
test case should fail, since it probably would not be 
possible to store another account with the same name 
(assumption). Evaluations are in some systems the trickiest 
parts. Observation is low, and one has to either wire-tap 
that the information or signals really passed – or do some 
complicated analysis to form a judgment. If this is left out, 
the testers are at loss - but also – the testing is not complete. 
The best questions to ask to be able to determine the 
outcome are: 

• How do you know the test case passed?  

• What are signs for failing?  
It may be evident if the system causes a crash, but in fault 
tolerant systems even that might never happen. 

J. Clean-up after Test Case Execution 

Equally important to create a useful test case is that it 
should be possible to repeat the test case, over and over. 
Clean-up after test case executions include all those actions 
that are needed to be able to remove the effects of 
execution to be able to execute again.  

Observations: Less than 5% of the students attempted to 
clean-up.  

Discussion: This category is easily forgotten, but an 
obvious category when doing automation. Clean up might 
contain many actions, and it could be particularly difficult 
to clean-up in some systems that always store data, and do 
not allow removal. Software is used for a long time and so 
are its associated test cases. A test case should be 
repeatable purely based on economic motive; to allow reuse 
of the test case and the thought that went into the analysis 
of the system. In Industry, it is not uncommon that a test 
case is re-executed up to 100 times within a project, and 
that it is used for many years. One cannot assume that the 

person creating the test case will necessarily execute it in 
the future. Repeatability is to be able to recreate any 
problem found and requires precise information. It must be 
possible to check if a specific problem has been corrected 
afterwards, and the fault is removed. Therefore test cases 
should not describe a group of data to be used, but should 
always contain a specific value. And the specific value 
must be removed after use to repeat the test case. A final 
aspect of repeatability is to make test cases fast and 
efficient to execute, typically by automating the execution. 
In the context of the software life-cycle, probably the cost 
and complexity of the testware has the same impact as the 
cost and complexity of the software itself.  

V. COMPARING WITH INDUSTRIAL TEST CASES 

 After constructing the categories containing systematic 
mistakes, we looked at each category and selected a series 
of industrial test cases and verification specifications, and 
investigated if any similar mistakes could be found. 
Lacking full statistical data, we wanted to assess whether if 
this approach could be taken into industry and used as a 
means to improve the test case creation. We analyzed a 
series of test specifications and test cases, and also 
interviewed and discussed these improvements with a 
series of managers, testers and developers, to get a more 
thorough understanding of the results. Our conclusion is 
that understanding and explaining the mistakes could lead 
to both improved templates and new ways of working thus 
improving industrial test cases.  

We decided to grade the list, based on our results, into a 
qualitative scale where the grading for the mistakes 
frequency is in a three scale range: O (Often), H (it 
Happens), S (Seldom), In addition, we added one more 
category (11) and one sub-category (6a), and adapted the 
category names.  The observed grading for our categories 
in industrial cases is as follows:  

1. Understanding instructions /level of details (H) 
2. Understanding the purpose of the system and 

current level and context of testing (S) 
3. Understanding test design techniques and use 

them (O) 
4. Assumptions, e.g. regarding correctness and 

completeness of specifications (H) 
5. Only using the most obvious test case or input (O) 
6. Starting position for the test case (H) 

a. Order of execution (O) 
7. Lacking specification of valid and invalid inputs 

(O) 
8. Unambiguous step-by-step description of test case, 

test execution, and test outcome evaluation (H) 
9. Not clearly defining the test case evaluation (S) 
10. Describe clean-up after test case, repeatability (O) 
11. Separation of instruction and data (O) 
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A. Understanding Instructions, System and Test Design 

This section describes the first three categories of mistakes 
in our above list. Our first mistake category, the ability to 
understand instructions and having appropriate level of 
detail seems to be a pre-requisite for a tester’s job. We 
could see that people accustomed to automated test case 
creations, as well as developers, were much more skilled in 
defining details. Still, this category with lack of appropriate 
detail exists occasionally in industry. Test cases and 
particularly verification specifications lacked sufficient 
level of detail allowing for different interpretations 
depending on the experience of the tester. This happens 
occasionally in written text, but since most test cases are 
automated, they possess enough detail. Interviews with the 
testers revealed that the level of detail is added when 
automation happens, which makes the automation a rather 
costly step to take from the abbreviated manual test cases 
or verification specifications. We could also see a great 
variety depending on coding skills.  

Our second category, lacking appropriate understanding 
of the system and the test target goal or context is rather 
rare in industry, and also self-regulating. Experienced 
testers talked about beginners not making that connection, 
and that it was mostly revealed on the type of failure 
reports written – or shown when reviewing the test 
documentation.   

Our third category, the know-how and utilization of test 
design techniques seems surprisingly low in industry, 
which could be related to the time pressure, where taking 
the most obvious test case and inputs dominates. Many 
testers are aware of this and would like to explore negative 
testing more, but this is seldom given priority. Most test 
cases are written in the fashion that they take the first and 
best positive input to validate (one aspect) of a requirement, 
and demonstrating that it works. Seldom are techniques 
utilized to make sure all input categories are explored, such 
as negative testing using invalid data. By improving the test 
case templates and verification specification, it would be 
easier to utilize this result when automating the test cases. 

B. Assumptions in Industry 

The assumptions category e.g. regarding correctness and 
completeness of specifications seems to be earned as a part 
of one’s status and know-how when working in industry. 
Many testers are rigid, as required by some systems, in the 
sense that they are following rules strictly, and if the 
specification (requirement) says so – it must be right. But, 
if you have confidence and know-how of the system, 
maybe your first thought as a tester is – maybe this 
(requirement) is wrong (unclear)? We have also noticed 
some cultural differences, where some cultures and 
personalities seem better in confronting poor specifications 
and, as a result, they create test cases targeting important 
areas. There is clearly a need for both types of testers. 

C. Obvious Selection of Input values and Test Case 

We were rather disappointed that it seems like the 
obvious input and test case is very common in industry. 
This result is based on multiple factors, where time 
pressure to write many test cases and confirm requirements 
seem to be the dominating one. Other factors might be lack 
of knowledge on test design techniques, not specifying 
input ranges etc. in specifications.  

D. Categories for Test Case Implementation: Starting 

position, Descriptions and Evaluations 

Definition of a starting position are sometimes missing in 
the manual or written test specification, where it is assumed 
users know and understand the context of the execution, 
and this step is always added to get automatic suites – 
which are the commonplace type of execution of test. 
Again, waiting to specify it leaves the problem to the 
implementation of the test case into executable code. A 
comment from the testers interviewed is that the test 
specifications are sometimes written so early, that the 
specific path to get there might not be crystal clear, and is 
deliberately left out. What was more interesting is that 
almost all automated suites were built in a specific order of 
execution, with rather long series of execution paths. Test 
specifications in industry could be really large and dividing 
them in different test cases is common, but they are kept 
together as a suite. This has limitations, since the technique 
of permutation, restarting suites at different positions when 
things go wrong and other benefits of several independent 
starting positions, are lost.  

Therefore we are introducing a subcategory, Order of 

execution, particularly aimed to make automation suites 
less intercase dependent, with the intention to make 
smaller, self-contained test cases that could be used in 
different order in different suits, and re-used with a wide 
variety of input data.  

Specifying the input would greatly improve the utilization 
of test cases written, and this mistake seems to be 
commonplace, and we see a lack of know-how translating 
this into effective test cases. It seems that valid input is 
more often used than invalid ones since the specifications 
are being written in this way. 

Mistakes in the category of test evaluation are rare. 
Unfortunately the use of exploratory test seems to influence 
the perception that clear evaluation is not needed. An 
unfortunate downside seems to be that these test cases are 
not repeatable, and thus the know-how and time of creating 
them are lost. Random execution is a good complement to 
teach testers the feel and to better learn the system, but 
expectancy of stumbling across serious faults in our domain 
is very low.  

With regards to repeatability of test cases, it seems 
reasonable to assume that this is paramount for industry. 
But when interviewing testers, and by looking at some test 
suites, it becomes clear that it occasionally happens that, a 
lot of detail and information is missing from the test cases, 
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making it difficult to repeat without thorough and specific 
education. The opposite could also be true, that an 
automated test suite could be encoded with little and no 
documentation or heading/book-keeping information, 
making it extremely difficult to update the suite, and thus 
make it obsolete in a very short time. We have deemed that 
the specifications of input and its ranges are a common 
mistake and missing, but to our joy we could also find the 
opposite.  It turns out that the tool QuickCheck [18] has 
been used, which requires a clarification of the valid and 
the invalid by defining the borders (min – max). This is a 
good step forward for improving the test coverage.   

E.  A New Category: Separation of Instruction and Data 

The category is motivated by and related to the handling 
of larger amounts (several thousands) of executed test cases 
– often directly translated from manual test cases, creating 
a rather unstructured set of test executions with many 
overlaps and hard-coded data. It seems that not all test 
organizations have utilized the possibility to re-structure 
the test cases. A clear separation of the action/steps of 
execution and the variety of parameters/variables/input 
values would be a great improvement. This would enable a 
better future-proof and document-minimalistic approach to 
handle large input domains, or when there is a combinatory 
explosion of the input domain (having a series of dependent 
input variables). Instead of making a unique test case for 
every input, fewer test cases chewing through a series of 
input-output relations seems to be the most efficient way to 
automate. 

This results in a separation of instruction (the step-by-step 
actions) and data (input). Also techniques like random 
selection of data can then be used to vary the regression 
suites. The savings of this approach comes in many forms, 
by making the test code leaner, handling a variety of input 
variables and utilizing the test case creation better.   

I. SYSTEMATIC MISTAKE ELIMINATION METHOD 

By our identification of categories of mistakes we 
realized that even though most categories are very general, 
the categorization is dependent on the considered 
application domain and systems, as well as on the experts 
performing the categorization. As noted when comparing 
our results with industrial test cases, there may very well be 
additional categories and/or subcategories that are relevant. 
Due to this open-endedness of the problem we suggest a 
meta-approach, which allows the basic method to be 
extended with categories. Our improvement process works 
according to Figure 3.  

This process can be started at two steps, either by 
assuming the categories in this paper as an initial start – or 
by using the proposed test case template which would be at 
phase e in Figure 3. Otherwise, the first and initial step 
(assuming that test cases exist) is to select a sample of test 
cases and test specification or similar documentation where 
the test design phase is manifested. In step b an expert 

reviews the different test cases based on how well they 
have performed different test design techniques (which also 
includes how well the test cases are at targeting faults and 
contributing to coverage of the system). This will result in 
the identification of a series of mistakes made.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Systematic Mistake Elimination Method 

In c, different systematic mistakes are defined and 
categories are created, which can then be measured for 
frequency in the existing test cases. Improvements will then 
be identified such as a new test template, or usage of new 
test case design tools, or improving the required test 
specifications template. Finally this new know-how must 
be taught (as shown in phase f), followed by deployment at 
the organization assessed. The result or improvements 
should be measurable in g, in a series of measurements, e.g. 
improved fault frequency, and must be periodically 
reviewed by the organization. 

II. THREATS TO VALIDATY 

In regards to conclusion validity the major threat is that 
the collection and judgment of data poses some researcher 
bias and the categorization might have become different if 
another person would have qualified and decided on some 
of the tricky borderline cases.  

The main potential threat to internal validity is diffusion 
or imitation, since respondents could have been influenced 
by each other. There was no way to check this, since all had 
the same system under test. This means, that a result with 
many mistakes could have been spread among students as 
correct, and thus negatively influenced the result.  The 
interviews at industry were rather informal in nature, and 
the researcher could have influenced the result.  

We conclude that the threat to the construct validity to be 
limited, since we have explicitly measured their 
frequencies, based on our definitions of mistakes. The 
evolutionary nature of this study and the fact that the 
original intent of this study was different, could pose as a 
threat to the construct validity.  

The major threats to external validity, answering if these 
results are possible to generalize, can be discussed. It seems 
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like our result is just a first attempt, and that replicating this 
result is an obvious next step. The results from the test 
design techniques in Figure 2 are not possible to generalize 
since they are dependent on the system under test.  
  Another confounding factor not taken into consideration is 
that the student group and industry are from a limited 
selection. We believe the amount of experimental data is 
appropriate and adequate for such an initial study. 
However, we have no sufficient data to support the 
elaboration on what consequences this has in industry, 
since it was a convenience sample. Therefore the result for 
the new and added category identified in industry is not 
sufficiently supported as a systematic mistake. The 
industrial trial must definitely be better randomized, using 
more respondents from different industries, so that the view 
can be generalized. 

III. CONCLUSION AND FURTHER WORK 

This paper demonstrates the importance of dissecting the 
process of test design and understanding details of mistakes 
made when constructing test cases. It seems possible that 
testers in industry make systematic mistakes frequently 
during test case construction, leading to reduced efficiency 
and effectiveness of the testing efforts, and analyzing these 
mistakes will form an important basis for improvements in 
the testing practice. 

We have suggested a series of mistake categories, based 
on analysis of mistakes novice testers made, and we have 
used this as a starting point for assessing industrial test 
design. We think this work implies improvements that can 
be done for requirement formulation (specifically adding 
input analysis based on the equivalence partitioning 
technique). Another improvement is focusing on how to 
better write the test cases in an automated fashion from the 
beginning (code the step-by-step description, as well as the 
result evaluation and clean-up aspects), to diminish the 
effort of translating the often too simplified test case into 
usable test scripts, where post-processing is defined from 
the beginning.  Creating unambiguous test cases at an early 
stage also makes it possible to utilize a wider range of the 
work-force in the execution, which would otherwise 
become person dependent due to interpretation difficulties.  

Making a larger study of a series of industries, using a 
more randomized sample of test cases, is an obvious next 
step to get better validation of our method. From an 
industrial perspective, it would be even more interesting to 
base on findings from applying our method, device 
measures (e.g., targeted education and individual feedback 
to testers) for improving the testing practice, as well as 
evaluating the effects of these improvements.  

ACKNOWLEDGMENT 

We would like to thank Ericsson AB for funding our 
work and for allowing us to publish these results. The 

Knowledge Foundation is acknowledged for funding this 
work through the SAVE-IT program. 

REFERENCES 

[1] IEEE Std. for Software Test Documentation 829-1998 & 2008 

[2] Basili, V. and Elbaum, S. 2006. “Empirically driven SE research: 
state of the art and required maturity”, Int. Conf Soft. Eng., ICSE, 
2006 

[3] Basili, VR. Rombach, HD., “The TAME project: Towards 
improvement-oriented software environments”, Trans. of Softw. 
Eng. June Vol 6. 1988 

[4] Beizer, B. Software Testing Techniques, Int. Thomson Computer 
Press, 2nd ed., Boston, 1990 

[5] Buddy system http://buddi.digitalcave.ca/index.jsp 

[6] DeMillo, R.A.; Lipton, R.J.; Sayward, F.G.; ”Hints on Test Data 

Selection: Help for the Practicing Programmer” IEEE Computer, 
Vol 11,  Issue 4,  pp 34 – 41, 1978 

[7] Eldh, S., “On Evaluating Test Techniques In An Industrial 
Setting”, Mälardalen Uni. Lic. Thesis No.78, 2007 

[8] Eldh, S., Punnekkat, S., Hansson, H., Jönsson., P.: Component 
Testing is Not Enough - A Study of Software Faults in Telecom 
Middleware, Proc. 19th IFIP Int Conf. on Testing of Comm. Syst 
TESTCOM/FATES, Springer , LNCS, Tallinn, Estonia  2007 

[9]  Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., Sundmark, 
D.: “A Framework for Comparing Efficiency, Effectiveness and 
Applicability of Software Testing Techniques.” Proc. TAIC, IEEE, 
London, UK. 2006.  

[10] Test Case Template & Additional data and information, regarding 
Systematic Mistakes in Test Design Study: 
http://www.idt.mdh.se/~seh01/ICST2011/  

[11] Jorgensen, P. “Software Testing: A Craftsman’s Approach”,  
Department of Computer Science and Information Systems, Grand 
State University, Allendale, CRC Press, 1995 

[12] King, J. C. A new approach to program testing. In Proc- of the Int. 

Conf. on Reliable Software (Los Angeles, California, April 21 - 
23, 1975). ACM, New York, NY, 228-233.  1975. 

[13] King, J. C. x Symbolic execution and program testing. Commun. 
ACM 19, 7 (Jul. 1976), 385-394. 1975.  

[14] Legeard, B., Peureux, F., Utting M., Automated boundary testing 
from Z and B, Lecture Notes in Computer Science, Springer 
Verlag, 2002  

[15] Myers, G. The Art of Software Testing. John Wiley & Sons Inc, 
USA, 1979 

[16] Murnane, T., Reed, K., Hall, R., “Tailoring Black-box methods”, 
ASWEC , 2006 

[17] Nguyen, D. C., Perini, A., and Tonella, P., A Goal-Oriented 
Software Testing Methodology, V. 4951, p. 58-72, LCNS, 
Springer Verlag, 2008 

[18] QuickCheck http://www.quviq.com/ 

[19] Whittaker, J. A., How to Break Software: A Practical Guide to 
Testing, Addison-Wesley, 2003 

[20] Whittaker, J. A., Thomason, M.G., “A Markov Chain Model for 

statistical software testing.” Transactions on  Software 
Engineering, VOL. 20, No. IO, Oct 1994 

[21] Xu, D. and Xu, W.  State-based incremental testing of aspect-
oriented programs. In Proc. of the 5th int. Conf. on Aspect-

Oriented Software Development (Bonn, Germany, March 20 - 24, 
2006). AOSD '06. ACM, New York, NY, 180-189. 

[22] Zhu, H., Hall, P.A.V., May, J.H.R., “ Software Unit Test Coverage 
and Adequacy”, ACM Com. Surveys, Vol. 29, No.4 Dec 1997.

 

79


