

22 On Test Design

Chapter 2. Introduction to Test Design

In this thesis we focus on test design, specifically test design
techniques (TDTs), which is the core of testing. Applying a TDT to a
system, results in a test case used to execute the system and get a
verdict. Testing has multiple goals, e.g. ensuring that specific paths
execute correctly, but also attempting to find faults. Furthermore,
testing is itself a way to measure some qualities of the system, by
combining several test case executions in suites that exercises the
system. This can result in additional information about the system, in
terms of measures of the code coverage, performance, robustness,
usability, functionality or other aspects and qualities of a software
system. The main difference between just executing the system and
testing is that the test case must include a verdict. A verdict means a
way to determine if the system behaves as expected with respect to
the specific aspect and context or if the system fails. Failing means
that the expected service is not delivered, or the system does not
behave according to expectation, specification or some defined
measurement or norm.

2.1 Expectations on Testing
Our goal is to show that increased know-how of testing makes it
possible to produce high quality software, without increasing the cost.
Unfortunately the trend in industry is the reverse, focusing more on
producing software fast than on quality. There is, however, a limit on
how bad quality any user can accept.

Many customers expect fault-free software, which is unrealistic in
large complex systems. In most software systems, it is possible to
minimize unscheduled and unwanted runtime stoppages, ensuring
continued execution. The impact of faults propagating into failure of a
service can be limited through other techniques, such as self-
correcting code, layered protocols, using redundancy or other fault-
tolerant computing techniques, but this is not discussed in this thesis.
In fact we do not know enough about which faults propagate into a

24 On Test Design

visible failure, or which is the best way to handle software failures.
Many such adjacent areas have been encountered in our research and
we report them only to the extent we have investigated them.

We define our terminology below and provide information on some
aspects of the execution of the test cases. Although this is not the
main area of this thesis, the result of the implemented test design has
great impact on the test execution.

In particular, three aspects of effective, efficient and applicable
testing have been in focus. These aspects explain how test and test
design is dependent on the software development process:

• Efficiency: The speed with which we can create test cases for a
specific system, and the speed with which can we apply, execute
and evaluate (determine the result of) these test cases. Efficiency
is not restricted only to the test execution; we take the more
practical standpoint that efficiency concerns all activities of the
test process.

• Effectiveness: The ability to provide new or added coverage.
Effectiveness can be viewed as the fault finding ability (in
relation to system and specification) of the test cases.

• Applicability: When (in what system) can a specific test design
(a specific test case) be applied and under what circumstances is it
meaningful. Applicability also refers to the ability to transform a
theoretic (and thus general) approach to a specific situation (make
an implementation).

Test Design is mainly influenced by the requirements, the system
design, the actual code, and the execution paths. The impact on the
test design concerns what level of test is addressed and the scope of
the system addressed. In turn, the result of the test design process
impacts the test cases. Other aspects of the test design process are
only implicitly discussed. This includes, methods to define and handle
test cases and test case execution, the test implementation resulting in
test code, the test tools (if any) and the evaluation of the outcome of
the test execution, which results in the measurement of the system
quality.

Figure 2.1 and Figure 2.2 illustrate how we limit the scope we are
addressing. In Figure 2.1 we identify the targets of this research,
indicated by green. Semi-dashed (dot dash or light blue) boxes are

On Test Design 25

partly or implicitly addressed (e.g., (Test) execution), and dashed
boxes (pink areas) indicate areas that are not considered at all (e.g.,
Test Code).

Figure 2.1 Overview of targeted areas in this thesis.

In Figure 2.2 we describe test design from a different perspective,
through the efficient, effective and applicable view. This is divided
into TDTs and the test design implementation. TDTs can be divided
in many ways. We will use a categorization of techniques into:

1. Functional
1.1. Input/parameter related
1.2. Path/graph or order related (Structural)

2. Non-functional

Functional testing aims to test some aspect, function or feature of the
system. Functional techniques can be divided into input and path
specific use of the technique – both are needed when developing the

Formal: Verification

Informal: Reviews
Requirements

Design/
Architecture

(Test) execution

Evaluation, Measurement of the System Quality

Code

 Test Design

Testability

Architecture

Test Code

(Test) execution

Stopping Criteria

24 On Test Design

visible failure, or which is the best way to handle software failures.
Many such adjacent areas have been encountered in our research and
we report them only to the extent we have investigated them.

We define our terminology below and provide information on some
aspects of the execution of the test cases. Although this is not the
main area of this thesis, the result of the implemented test design has
great impact on the test execution.

In particular, three aspects of effective, efficient and applicable
testing have been in focus. These aspects explain how test and test
design is dependent on the software development process:

• Efficiency: The speed with which we can create test cases for a
specific system, and the speed with which can we apply, execute
and evaluate (determine the result of) these test cases. Efficiency
is not restricted only to the test execution; we take the more
practical standpoint that efficiency concerns all activities of the
test process.

• Effectiveness: The ability to provide new or added coverage.
Effectiveness can be viewed as the fault finding ability (in
relation to system and specification) of the test cases.

• Applicability: When (in what system) can a specific test design
(a specific test case) be applied and under what circumstances is it
meaningful. Applicability also refers to the ability to transform a
theoretic (and thus general) approach to a specific situation (make
an implementation).

Test Design is mainly influenced by the requirements, the system
design, the actual code, and the execution paths. The impact on the
test design concerns what level of test is addressed and the scope of
the system addressed. In turn, the result of the test design process
impacts the test cases. Other aspects of the test design process are
only implicitly discussed. This includes, methods to define and handle
test cases and test case execution, the test implementation resulting in
test code, the test tools (if any) and the evaluation of the outcome of
the test execution, which results in the measurement of the system
quality.

Figure 2.1 and Figure 2.2 illustrate how we limit the scope we are
addressing. In Figure 2.1 we identify the targets of this research,
indicated by green. Semi-dashed (dot dash or light blue) boxes are

On Test Design 25

partly or implicitly addressed (e.g., (Test) execution), and dashed
boxes (pink areas) indicate areas that are not considered at all (e.g.,
Test Code).

Figure 2.1 Overview of targeted areas in this thesis.

In Figure 2.2 we describe test design from a different perspective,
through the efficient, effective and applicable view. This is divided
into TDTs and the test design implementation. TDTs can be divided
in many ways. We will use a categorization of techniques into:

1. Functional
1.1. Input/parameter related
1.2. Path/graph or order related (Structural)

2. Non-functional

Functional testing aims to test some aspect, function or feature of the
system. Functional techniques can be divided into input and path
specific use of the technique – both are needed when developing the

Formal: Verification

Informal: Reviews
Requirements

Design/
Architecture

(Test) execution

Evaluation, Measurement of the System Quality

Code

 Test Design

Testability

Architecture

Test Code

(Test) execution

Stopping Criteria

26 On Test Design

test case, and thus the specific execution flow. Even if you need to
specify both input and path (or flow) in the test case, the selection of
which aspects is the most important (or first in order) defines the goal
of the test and thus defines the technique.

This means if we focus on a certain structure (for example a specific
path in the code) we must define the input accordingly to achieve this
goal. If the goal is to make sure we have a test case for all types of
input, our goal looks different and so does the test case. It is common
to describe Functional (as solely being about input selection) and
Structural techniques as separate categories. This can be seen in e.g.
ISTQB [161].

Non-functional aspects (characteristics), are based on a measurement
that is analyzed in some form, usually using a series of combined
functional executions of the system (e.g. performance, load), or other
aspects or abilities (e.g. usability, installability etc.) of the system. We
will discuss this further in Chapter 13.2.5.

Note that the historical “black-box” and “white-box” view of software
can be applied to TDTs, but the unfortunate confusion with these
techniques and “level” of testing is often more prevalent. Some
techniques are black-box (input related) and some are white-box
(structural, but only on code level). Most techniques are applicable at
any level of testing so the black-box and white-box view when it
comes to testing have lost its significance. Not only does the
understanding of TDTs and how to apply them have significant
meaning for the result, but also it is important to make sure that no
unnecessary limitations on where to apply these techniques are
introduced.

Another distinction is the implementation of the test design, where we
distinguish between: “manually” – (a written text description of a test
case for human use), versus the “automatic” or “rule-based” (which
could be interpreted as computer generated test cases which could be
executable code or generated code). These two aspects affect both the
test design process in itself (how test cases are constructed), and the
resulting implementation, the executable test case including
evaluation. With these two main distinctions in mind, there are totally
different aspects of test design. In this thesis we have particularly
looked at functional test cases focussing on many techniques, which
address both execution path and input/output, with a tendency to look

On Test Design 27

at primary input techniques. We have looked at the differences
between the stages of the test case development and evaluation and
tried to categorize them according to rule-based techniques or
“human” techniques. In this thesis the main focus is TDTs for
functional tests.

Figure 2.2 Targeted areas of Test Design: Another perspective

In industry, it is common to talk about test design implicitly and
instead address the area through one of the following key words:

I. When, What: Process, organisation/structure, scope, type,
task, level, repetition (frequency)

II. Who: Skill, Comprehension
III. How (internal): Goal, relation to fault/ failure
IV. How (external): Tools, equipments, environment

One can claim that all these aspects I-IV test process influences on
how test design is done and what test cases are implemented and
selected. For example in what phase of a process the test case is
created (I) and with what goal (III) might be totally separated from

Techniques

1. Functional

1.1. Input

1.2. Path/graph

/structural

2. Non-
functional

Implementation

Manual (human)/
subjective

Or
Automation/ Rule
based

 I. When, What: Process, organization,
structure, scope, type, task, level,
repetition

II. Who: Skill, Comprehension

III. How (internal): Goal, relation to
fault/failure

Efficient

Effective

Applicable

IV. How (context): Tool, Equipment,
Environment

Test Design

26 On Test Design

test case, and thus the specific execution flow. Even if you need to
specify both input and path (or flow) in the test case, the selection of
which aspects is the most important (or first in order) defines the goal
of the test and thus defines the technique.

This means if we focus on a certain structure (for example a specific
path in the code) we must define the input accordingly to achieve this
goal. If the goal is to make sure we have a test case for all types of
input, our goal looks different and so does the test case. It is common
to describe Functional (as solely being about input selection) and
Structural techniques as separate categories. This can be seen in e.g.
ISTQB [161].

Non-functional aspects (characteristics), are based on a measurement
that is analyzed in some form, usually using a series of combined
functional executions of the system (e.g. performance, load), or other
aspects or abilities (e.g. usability, installability etc.) of the system. We
will discuss this further in Chapter 13.2.5.

Note that the historical “black-box” and “white-box” view of software
can be applied to TDTs, but the unfortunate confusion with these
techniques and “level” of testing is often more prevalent. Some
techniques are black-box (input related) and some are white-box
(structural, but only on code level). Most techniques are applicable at
any level of testing so the black-box and white-box view when it
comes to testing have lost its significance. Not only does the
understanding of TDTs and how to apply them have significant
meaning for the result, but also it is important to make sure that no
unnecessary limitations on where to apply these techniques are
introduced.

Another distinction is the implementation of the test design, where we
distinguish between: “manually” – (a written text description of a test
case for human use), versus the “automatic” or “rule-based” (which
could be interpreted as computer generated test cases which could be
executable code or generated code). These two aspects affect both the
test design process in itself (how test cases are constructed), and the
resulting implementation, the executable test case including
evaluation. With these two main distinctions in mind, there are totally
different aspects of test design. In this thesis we have particularly
looked at functional test cases focussing on many techniques, which
address both execution path and input/output, with a tendency to look

On Test Design 27

at primary input techniques. We have looked at the differences
between the stages of the test case development and evaluation and
tried to categorize them according to rule-based techniques or
“human” techniques. In this thesis the main focus is TDTs for
functional tests.

Figure 2.2 Targeted areas of Test Design: Another perspective

In industry, it is common to talk about test design implicitly and
instead address the area through one of the following key words:

I. When, What: Process, organisation/structure, scope, type,
task, level, repetition (frequency)

II. Who: Skill, Comprehension
III. How (internal): Goal, relation to fault/ failure
IV. How (external): Tools, equipments, environment

One can claim that all these aspects I-IV test process influences on
how test design is done and what test cases are implemented and
selected. For example in what phase of a process the test case is
created (I) and with what goal (III) might be totally separated from

Techniques

1. Functional

1.1. Input

1.2. Path/graph

/structural

2. Non-
functional

Implementation

Manual (human)/
subjective

Or
Automation/ Rule
based

 I. When, What: Process, organization,
structure, scope, type, task, level,
repetition

II. Who: Skill, Comprehension

III. How (internal): Goal, relation to
fault/failure

Efficient

Effective

Applicable

IV. How (context): Tool, Equipment,
Environment

Test Design

28 On Test Design

how often the test execution is done, with what tool (IV) and in what
context (IV).

2.1.1 Test Design Techniques and Test Cases

Test design is a phase with the goal to create test cases. A test case is
the result of applying a test design technique to a specific location in
the software system application (or part thereof). Some test design
techniques will, when applied, result in a set of test cases for a
specific part of a system. By a test design technique (TDT), or test
technique for short, we mean a method or approach that
systematically describes how a set of test cases should be created
(with what intention and goals, and possible based on rules). The
TDT aids in limiting the number of test cases that can be created,
since it will be targeting a specific type of input, path, fault, goal,
measurement etc.

Furthermore, a test case is defined here as a repeatable execution in
the system, with a specific start (i.e. location in the system), a step by
step description of the particular execution (with appropriate and
exact input) and an expected result. We count each unique new input
as a new test case. A test case can also be written in a generic manner,
where input and its corresponding evaluation or “output” used to
determine the result of the test (the verdict), is separated from the
execution flow. We call these generic test cases. Test cases should be
described in a way that allows them to be automatically executed. A
test case can be as simple as pressing a button but can also comprise
several pages of instructions. We do not make a distinction between a
test case and a test procedure as in IEEE Std. 829 [110]. Thus a test
case should be explicitly executable regardless of its representation
(human readable text or programming language). A test case must
have a unique identifier and a reference to documentation or
requirement to ensure traceability. A verdict is the result of applying
and executing the test case in the system. The verdict information is
stored in a test record at the time of execution. A test case should be
repeatable by anyone (yielding the same result) and measurable, by
recording deviations from expected result. A test suite is a series of
consecutive test cases that may or may not have anything in common.
In a test suite, test cases may be dependent on each other or

On Test Design 29

independent on previously executed test cases. The IEEE 829
standard [110] calls the relation between test cases as inter-
dependencies. All test cases need a “starting point” before they are
ready to execute. This can either be the same for all test cases or,
more commonly, a series of test cases defines different paths through
the system to get to a “starting-point” for another test case.

2.1.2 Efficiency

Efficiency is defined by Rothermel and Harrold [185] as the
measurement of the computational cost, and determines the
practicality of a technique. We believe, however, that efficiency must
be considered in a broader context. We expand their definition to
include both execution and the creation of the test case. This includes
time required to understand and implement the test case using a
specific TDT. Efficiency of a test design technique is how fast the
technique is understood, how fast the location where to apply the test
case is identified and how fast the test case can be developed. The
efficiency of a test case is how fast you can execute it and determine a
verdict. Efficiency of the test case is closely related to automation. We
often focus on test execution, which is the most obvious saving. Many
aspects of test case creation can be automated. All execution of test
cases can be automated, but the cost of automation of some of the test
cases is not always justified.

2.1.3 Effectiveness

Effectiveness of a technique can be defined as the number of faults the
technique can find. This is a concept explored by Rapp & Weyuker
[181], who states that “effectiveness of a test technique is only
possible to measure if you can compare two techniques for the same
set (i.e. software), but the result is not general”, meaning, that it is
only valid for a specific set. We aim to find ways to make two
techniques comparable and the result general and define some
theoretical limitations on juxtaposing the techniques. We define an
effective test case as a test case with the ability to find/expose faults
(failures) or a test case that improves the coverage of the software
execution paths. All initial test cases are therefore effective in the

28 On Test Design

how often the test execution is done, with what tool (IV) and in what
context (IV).

2.1.1 Test Design Techniques and Test Cases

Test design is a phase with the goal to create test cases. A test case is
the result of applying a test design technique to a specific location in
the software system application (or part thereof). Some test design
techniques will, when applied, result in a set of test cases for a
specific part of a system. By a test design technique (TDT), or test
technique for short, we mean a method or approach that
systematically describes how a set of test cases should be created
(with what intention and goals, and possible based on rules). The
TDT aids in limiting the number of test cases that can be created,
since it will be targeting a specific type of input, path, fault, goal,
measurement etc.

Furthermore, a test case is defined here as a repeatable execution in
the system, with a specific start (i.e. location in the system), a step by
step description of the particular execution (with appropriate and
exact input) and an expected result. We count each unique new input
as a new test case. A test case can also be written in a generic manner,
where input and its corresponding evaluation or “output” used to
determine the result of the test (the verdict), is separated from the
execution flow. We call these generic test cases. Test cases should be
described in a way that allows them to be automatically executed. A
test case can be as simple as pressing a button but can also comprise
several pages of instructions. We do not make a distinction between a
test case and a test procedure as in IEEE Std. 829 [110]. Thus a test
case should be explicitly executable regardless of its representation
(human readable text or programming language). A test case must
have a unique identifier and a reference to documentation or
requirement to ensure traceability. A verdict is the result of applying
and executing the test case in the system. The verdict information is
stored in a test record at the time of execution. A test case should be
repeatable by anyone (yielding the same result) and measurable, by
recording deviations from expected result. A test suite is a series of
consecutive test cases that may or may not have anything in common.
In a test suite, test cases may be dependent on each other or

On Test Design 29

independent on previously executed test cases. The IEEE 829
standard [110] calls the relation between test cases as inter-
dependencies. All test cases need a “starting point” before they are
ready to execute. This can either be the same for all test cases or,
more commonly, a series of test cases defines different paths through
the system to get to a “starting-point” for another test case.

2.1.2 Efficiency

Efficiency is defined by Rothermel and Harrold [185] as the
measurement of the computational cost, and determines the
practicality of a technique. We believe, however, that efficiency must
be considered in a broader context. We expand their definition to
include both execution and the creation of the test case. This includes
time required to understand and implement the test case using a
specific TDT. Efficiency of a test design technique is how fast the
technique is understood, how fast the location where to apply the test
case is identified and how fast the test case can be developed. The
efficiency of a test case is how fast you can execute it and determine a
verdict. Efficiency of the test case is closely related to automation. We
often focus on test execution, which is the most obvious saving. Many
aspects of test case creation can be automated. All execution of test
cases can be automated, but the cost of automation of some of the test
cases is not always justified.

2.1.3 Effectiveness

Effectiveness of a technique can be defined as the number of faults the
technique can find. This is a concept explored by Rapp & Weyuker
[181], who states that “effectiveness of a test technique is only
possible to measure if you can compare two techniques for the same
set (i.e. software), but the result is not general”, meaning, that it is
only valid for a specific set. We aim to find ways to make two
techniques comparable and the result general and define some
theoretical limitations on juxtaposing the techniques. We define an
effective test case as a test case with the ability to find/expose faults
(failures) or a test case that improves the coverage of the software
execution paths. All initial test cases are therefore effective in the

30 On Test Design

beginning, since they initially add some coverage. Judgment of what
test cases are effective should be done given a set of test cases, by
comparing if the test cases have the same coverage or additional
coverage.

2.1.4 Applicability

Applicability of a technique, relates to the efficiency of the TDTs, and
adds a dimension of meaningfulness. It should be possible to develop
a test case based on a specific technique, within reasonable time and
cost. Applicability becomes a combination of the difficulty to learn,
use, create and evaluate the result of test cases with a specific
technique for a particular system. Applicability also encompasses the
ability of the technique to be automated, describing and minimizing
the human intervention, and corresponding to a well defined “rule”,
which makes the TDT an unambiguously repeatable process for each
new test case applied to the software system.

One aspect of applicability is generality which measures the ability of
a technique to handle realistic and diverse language constructs,
arbitrarily complex code modifications and real applications. If a
technique is not general, it is only valid in its specific context and not
necessarily possible to apply to other software and domains [185].

2.1.5 Fault, Error, Failure

The related terminology in this area (fault, error, cause or reason,
failure, bug, defect, incident, and anomaly) is often confusing because
these terms are used interchangeably and inconsistently by many both
in industry and academia; see further discussion in Mohaghegi et al
[156]. Therefore we define the following terms inspired by earlier
work of Avižienis & Laprie [8] and Thane [196], where a fault is the
static origin in the code, that during dynamic execution propagates,
(in Figure 2.3 described as by a solid arrow) to an error (which is an
intermediate infection of the code). If the error propagates into output
and becomes visible during execution, it has caused a failure. An error
is thus the manifestation of a fault in the system and a failure is the
effect of an error on the service. An error or failure can both cause
another error to occur, or trigger another fault. At Ericsson, failures

On Test Design 31

are reported as Trouble Reports (TRs). Occasionally these TRs, in
their analysis section, give a more direct explanation of the cause of
the failure, but mostly they just describe the symptoms. TRs do not
uniquely identify failures (i.e., several TRs may identify the same
failure). There is not a one-to-one relationship between a fault and a
failure (i.e. different faults may lead to the same failure and some
faults may cause multiple failures).

Figure 2.3 Terminology mapping

A failure can, in turn, propagate to another part of the software and be
the cause of another error or failure. One difference compared with
Avižienis & Laprie [8] is that we separate the actual cause of the fault
from what manifests itself in the software. For example, an incorrect
specification can lead to a fault in the software. To find what code
changes are needed (see fault-injection technique in 10.3.1) in order
to represent such a fault is not clear. It may be that the fault
specification defines a case not implemented in the code leading to
faulty assumptions and not adding extra paths needed. We
occasionally refer to the term “real fault”, meaning, a fault found in a
commercial or industrial system, in contrast to a fictive creation of a
fault. We define failure density as the number of failures found per
Kilo Lines of Code (KLOC).

Figure 2.4 shows that we are interested in finding faults (manifested
in the code) that propagate (and become visible) at different levels
during the testing process. This figure provides a framework, which
we can use to relate the efficiency of different TDTs; we can answer
questions such as “when is a TDT more efficient?” (i.e. at what level)
and “is it possible to find a particular type of fault earlier?”

Fault

Error Failure some effect

2. Dormant,

not yet executed

Infected,
intermediate
state

Causes

Failure,
visible

Fix

1. Hidden,
non-executable

30 On Test Design

beginning, since they initially add some coverage. Judgment of what
test cases are effective should be done given a set of test cases, by
comparing if the test cases have the same coverage or additional
coverage.

2.1.4 Applicability

Applicability of a technique, relates to the efficiency of the TDTs, and
adds a dimension of meaningfulness. It should be possible to develop
a test case based on a specific technique, within reasonable time and
cost. Applicability becomes a combination of the difficulty to learn,
use, create and evaluate the result of test cases with a specific
technique for a particular system. Applicability also encompasses the
ability of the technique to be automated, describing and minimizing
the human intervention, and corresponding to a well defined “rule”,
which makes the TDT an unambiguously repeatable process for each
new test case applied to the software system.

One aspect of applicability is generality which measures the ability of
a technique to handle realistic and diverse language constructs,
arbitrarily complex code modifications and real applications. If a
technique is not general, it is only valid in its specific context and not
necessarily possible to apply to other software and domains [185].

2.1.5 Fault, Error, Failure

The related terminology in this area (fault, error, cause or reason,
failure, bug, defect, incident, and anomaly) is often confusing because
these terms are used interchangeably and inconsistently by many both
in industry and academia; see further discussion in Mohaghegi et al
[156]. Therefore we define the following terms inspired by earlier
work of Avižienis & Laprie [8] and Thane [196], where a fault is the
static origin in the code, that during dynamic execution propagates,
(in Figure 2.3 described as by a solid arrow) to an error (which is an
intermediate infection of the code). If the error propagates into output
and becomes visible during execution, it has caused a failure. An error
is thus the manifestation of a fault in the system and a failure is the
effect of an error on the service. An error or failure can both cause
another error to occur, or trigger another fault. At Ericsson, failures

On Test Design 31

are reported as Trouble Reports (TRs). Occasionally these TRs, in
their analysis section, give a more direct explanation of the cause of
the failure, but mostly they just describe the symptoms. TRs do not
uniquely identify failures (i.e., several TRs may identify the same
failure). There is not a one-to-one relationship between a fault and a
failure (i.e. different faults may lead to the same failure and some
faults may cause multiple failures).

Figure 2.3 Terminology mapping

A failure can, in turn, propagate to another part of the software and be
the cause of another error or failure. One difference compared with
Avižienis & Laprie [8] is that we separate the actual cause of the fault
from what manifests itself in the software. For example, an incorrect
specification can lead to a fault in the software. To find what code
changes are needed (see fault-injection technique in 10.3.1) in order
to represent such a fault is not clear. It may be that the fault
specification defines a case not implemented in the code leading to
faulty assumptions and not adding extra paths needed. We
occasionally refer to the term “real fault”, meaning, a fault found in a
commercial or industrial system, in contrast to a fictive creation of a
fault. We define failure density as the number of failures found per
Kilo Lines of Code (KLOC).

Figure 2.4 shows that we are interested in finding faults (manifested
in the code) that propagate (and become visible) at different levels
during the testing process. This figure provides a framework, which
we can use to relate the efficiency of different TDTs; we can answer
questions such as “when is a TDT more efficient?” (i.e. at what level)
and “is it possible to find a particular type of fault earlier?”

Fault

Error Failure some effect

2. Dormant,

not yet executed

Infected,
intermediate
state

Causes

Failure,
visible

Fix

1. Hidden,
non-executable

32 On Test Design

Figure 2.4 Fault propagations to failures,

 can be captured at different levels

In Figure 2.4, a solid arrow means that the error could be found if a
test was entered at this level, e.g. arrow 3, means it can be found at all
levels up until Integration level y, where the fault then does not
propagate further. A dashed or dotted arrow means that the fault or
error is hidden and will not lead to a visible failure (arrow 7 and 8) In
Figure 2.4, this means that arrow 1 is a fault that can be found in
component test, but does not propagate further. Number 2-8 are
errors, since they propagate further in the code, i.e. infecting other
parts of the code. Number 4 becomes a failure to the customer, and
number 6 has the potential to be a failure at system level – and the
customer, if not removed, whereas the others hide for the moment in
the code. However, they might propagate to a failure if the code is
reused or the context changes. Note in particular that the number 6
failure is not visible until sub-system level and even if the fault exists
from the beginning, it is not easily found at the component or
integration level. Fault number 7 and 8 will never be exposed, since
they lie in a location that cannot be triggered in the existing code. All
hidden faults and errors are waiting for the right circumstances and
context to propagate to a failure. These faults are by Avižienis &
Laprie [8] called dormant or residual and are usually possible to find
at some level of testing.

Component Level

Integration Level x

Sub-system Level

Code (faults)

System Level

1

2

3

4

5

6

7

8
Integration Level y

On Test Design 33

2.2 Test Process Introduction
The phases of the process model always exist in the software life
cycle, regardless of how fast, or how many iterations you perform
within a project. The most basic and fundamental process is the V-
model in Figure 2.5 that is often wrongly viewed as a waterfall model
which might have been its original description, but this has more to do
with how you choose to interpret it. The W-model, which is a
development of the V-model1 that better captures test design, is
presented in Section 2.4 below.

2.3 The Basic Process V-model

Figure 2.6 V-model – where preparation and execution phases for

test are shown

1 The origin of the V-model is claimed to many. Similarly, the W-
model is claimed by many, whereas the true originator is often
accredited Paul Herzlich, UK, [87]. We have below adapted the
original W-model.

High-level
Design

Implementation

Code

Component Test

Low-level
Design

System Test

Acceptance Test

High-level
Integration & Test

Low-level
Integration & Test

Preparation phases Execution phases

Customer Requirements

Requirement &

Analysis

32 On Test Design

Figure 2.4 Fault propagations to failures,

 can be captured at different levels

In Figure 2.4, a solid arrow means that the error could be found if a
test was entered at this level, e.g. arrow 3, means it can be found at all
levels up until Integration level y, where the fault then does not
propagate further. A dashed or dotted arrow means that the fault or
error is hidden and will not lead to a visible failure (arrow 7 and 8) In
Figure 2.4, this means that arrow 1 is a fault that can be found in
component test, but does not propagate further. Number 2-8 are
errors, since they propagate further in the code, i.e. infecting other
parts of the code. Number 4 becomes a failure to the customer, and
number 6 has the potential to be a failure at system level – and the
customer, if not removed, whereas the others hide for the moment in
the code. However, they might propagate to a failure if the code is
reused or the context changes. Note in particular that the number 6
failure is not visible until sub-system level and even if the fault exists
from the beginning, it is not easily found at the component or
integration level. Fault number 7 and 8 will never be exposed, since
they lie in a location that cannot be triggered in the existing code. All
hidden faults and errors are waiting for the right circumstances and
context to propagate to a failure. These faults are by Avižienis &
Laprie [8] called dormant or residual and are usually possible to find
at some level of testing.

Component Level

Integration Level x

Sub-system Level

Code (faults)

System Level

1

2

3

4

5

6

7

8
Integration Level y

On Test Design 33

2.2 Test Process Introduction
The phases of the process model always exist in the software life
cycle, regardless of how fast, or how many iterations you perform
within a project. The most basic and fundamental process is the V-
model in Figure 2.5 that is often wrongly viewed as a waterfall model
which might have been its original description, but this has more to do
with how you choose to interpret it. The W-model, which is a
development of the V-model1 that better captures test design, is
presented in Section 2.4 below.

2.3 The Basic Process V-model

Figure 2.6 V-model – where preparation and execution phases for

test are shown

1 The origin of the V-model is claimed to many. Similarly, the W-
model is claimed by many, whereas the true originator is often
accredited Paul Herzlich, UK, [87]. We have below adapted the
original W-model.

High-level
Design

Implementation

Code

Component Test

Low-level
Design

System Test

Acceptance Test

High-level
Integration & Test

Low-level
Integration & Test

Preparation phases Execution phases

Customer Requirements

Requirement &

Analysis

34 On Test Design

Often names are adapted depending on size (of organisation, system
under test) and emphasis. The phases in the V-model are:

Preparation phases:

• Requirement & analysis phase, also including test
requirements and test analysis

• Design phase which can be divided into high-level and
low-level design, and also test design

• Implementation phase (that sometimes includes
component test), including both creation of code,
documentation and test code for automation (or test
procedures for manual testing)

Test Execution Phases:
• Component test phase (also called unit test)
• Integration phase, which can be divided into high-level

and low-level integration, including integration tests
• System test, where tests requirements often are separated

in internal phases called function test phases (functional
test) and characteristics (measurements of the system) test
phase (non-functional tests)

• Acceptance test (for customer release and/or
maintenance)

The arrows ÅÆ are central in the figure and show that the original
idea was that each level verified (tested) the corresponding level of
specification, and each at a different refinement level. This makes
better sense if the left-side is formally defined, and thus the right side
is unambiguously a verification method for the formal definition. This
aspect is never true in industrial system, since none of the left side
properties are open for interpretation, and has several solutions for the
implementation in code, and is thus ambiguous to its nature.

2.3.1 Requirement & Analysis Phase

In the Requirement & Analysis phase, the testing is static using
review and inspection techniques. There is no hindrance in creating
test cases already at this point, based on requirements or other
information about the system, but this requires a certain amount of
detail, that is seldom visible at this phase. Depending on analysis

On Test Design 35

techniques used, it might also be possible to derive test cases based on
the technique: e.g., using user-scenarios. These can be used directly to
define the end-to-end TDTs, creating use-cases in a more formal
sense, e.g. using UML-diagrams. In this phase, the test plan is created,
defining the set-up of the entire test project. What test plans should
contain is well described in IEEE Std. 829 [110], including phases,
test criteria, resources, what to test and not to test etc. In particular, in
parallel with the system requirement and analysis phases, testers
participates e.g. through reviewing the testability of the system
requirements. In particular one must gather and state requirements
that are necessary for performing adequate test, such as test tool
planning, test environment planning etc.

2.3.2 Design Phase

The design phase is where the architecture of the system is designed,
and testability must at this point be built into the structure. This is
also the time when TDTs should be applied to create test
specifications according to the test strategy. At the design phase,
where it is possible to use modelling, test cases can automatically be
generated from the model or created semi-automatically. There are
many ways to fail in architectures, one creating a large “monolithic”
system, where components are unclearly defined and the invisible
internal dependencies makes maintainability (error-correction),
testing and system longevity difficult.
Testing in the implementation phase is crucial in all aspects; this is
the time when the code is created, interpretations are manifested etc.
We have in [68] given some information on phases of the test
automation to take into account. At the implementation phase, static
tests in the form of design and model reviews can be performed. The
design phase is often divided into “high-level” design and “low-level”
design. The system could be seen as a “systems of systems” or a
system with many sub-systems interacting. This “software product
division” is often related to conceptual, organizational, sellable
divisions, as well as pure manageable items. Creating these actual or
“fictive” levels is done as a way to manage large complex systems.

34 On Test Design

Often names are adapted depending on size (of organisation, system
under test) and emphasis. The phases in the V-model are:

Preparation phases:

• Requirement & analysis phase, also including test
requirements and test analysis

• Design phase which can be divided into high-level and
low-level design, and also test design

• Implementation phase (that sometimes includes
component test), including both creation of code,
documentation and test code for automation (or test
procedures for manual testing)

Test Execution Phases:
• Component test phase (also called unit test)
• Integration phase, which can be divided into high-level

and low-level integration, including integration tests
• System test, where tests requirements often are separated

in internal phases called function test phases (functional
test) and characteristics (measurements of the system) test
phase (non-functional tests)

• Acceptance test (for customer release and/or
maintenance)

The arrows ÅÆ are central in the figure and show that the original
idea was that each level verified (tested) the corresponding level of
specification, and each at a different refinement level. This makes
better sense if the left-side is formally defined, and thus the right side
is unambiguously a verification method for the formal definition. This
aspect is never true in industrial system, since none of the left side
properties are open for interpretation, and has several solutions for the
implementation in code, and is thus ambiguous to its nature.

2.3.1 Requirement & Analysis Phase

In the Requirement & Analysis phase, the testing is static using
review and inspection techniques. There is no hindrance in creating
test cases already at this point, based on requirements or other
information about the system, but this requires a certain amount of
detail, that is seldom visible at this phase. Depending on analysis

On Test Design 35

techniques used, it might also be possible to derive test cases based on
the technique: e.g., using user-scenarios. These can be used directly to
define the end-to-end TDTs, creating use-cases in a more formal
sense, e.g. using UML-diagrams. In this phase, the test plan is created,
defining the set-up of the entire test project. What test plans should
contain is well described in IEEE Std. 829 [110], including phases,
test criteria, resources, what to test and not to test etc. In particular, in
parallel with the system requirement and analysis phases, testers
participates e.g. through reviewing the testability of the system
requirements. In particular one must gather and state requirements
that are necessary for performing adequate test, such as test tool
planning, test environment planning etc.

2.3.2 Design Phase

The design phase is where the architecture of the system is designed,
and testability must at this point be built into the structure. This is
also the time when TDTs should be applied to create test
specifications according to the test strategy. At the design phase,
where it is possible to use modelling, test cases can automatically be
generated from the model or created semi-automatically. There are
many ways to fail in architectures, one creating a large “monolithic”
system, where components are unclearly defined and the invisible
internal dependencies makes maintainability (error-correction),
testing and system longevity difficult.
Testing in the implementation phase is crucial in all aspects; this is
the time when the code is created, interpretations are manifested etc.
We have in [68] given some information on phases of the test
automation to take into account. At the implementation phase, static
tests in the form of design and model reviews can be performed. The
design phase is often divided into “high-level” design and “low-level”
design. The system could be seen as a “systems of systems” or a
system with many sub-systems interacting. This “software product
division” is often related to conceptual, organizational, sellable
divisions, as well as pure manageable items. Creating these actual or
“fictive” levels is done as a way to manage large complex systems.

36 On Test Design

2.3.3 Implementation Phase

The implementation phase is where the design is implemented into
code, and structured into programs according to the architecture. At
this phase, the test teams are also preparing the tests, either by
describing how they are manually performed in test procedures or by
defining test scripts to be executed by a test tool. Here other quality
enhancing techniques like static and dynamic code analysis, e.g. desk
checks and code reviews, can be performed. Creating tests cases
before the actual code implementation is a design principle referred to
as “test-driven development” (TDD) [16]. These are detailed
specifications of how to design the software, where software aims to
fulfil the specification. For TDD, the tests are actually executable –
but will fail, until the code is available to fulfil its intention. This also
means a new source of failure is introduced, a faulty test case. TDD is
used iteratively during development, but does not represent testing as
a measurement of quality, but as a design method especially including
refactoring, etc.

2.3.4 Component Test Phase

The execution phases starts when the code exists and together with
the component test phase. In TDD the benefit is that the component
test phase is hidden in the implementation phase. The test cases are
completed before the code is written which is an advantage.
Normally, test execution acts like a measurement of completion; when
all test cases are passed, the code is “completed”. The same happens
for TDD, but the amount of test cases is set beforehand cannot be
forgotten or skipped when schedules run late (which is probably one
of the more common reasons in industry of poor quality).
Nevertheless, TDD is mainly positive “normal” test cases that ensures
code works “according to intention”, and might not have any relations
with coverage (if not measured) or good test (if not measured).
Therefore, it is a good idea to highlight component test, so that it does
not get lost, and set defined targets of what quality should be achieved
of the component, and the component in the correct context,
regardless of when test cases are written. The component test phase is
a crucial step to make sure software parts are reliable. In Chapter 3
the benefit of Software Quality Rank (SQR) is described and how to

On Test Design 37

get some success with this improvement method for component test.
SQR [62][63][67] consists of steps for areas like static analysis and
dynamic analysis [9] and dynamic execution in addition to review, but
also defines implicit quality improvements like demanding sufficient
documentation, automated test suites, and targets coverage criteria
[220].

2.3.5 Integration and Integration Test Phase

Integration is done on as many levels as the software is divided in its
corresponding design. Applying good integration tests are difficult
and require careful analysis. This type of test execution is seldom
deliberate, but might be a part of having test cases traversing
components and systems, often in longer user scenarios or described
as use cases. Here, tests should already have been prepared for
execution. One way to minimize the impact of complexity is to
integrate and test bottom up, creating many levels of test, and thus
making sure each point of integration corresponds to responsibilities,
and can be shown to work. Another approach is doing what is
referred to as “top-down” integration, thus the system is created
(built) and integrated at very regular and frequent intervals. This is
also called “daily” or “frequent” builds, or sometimes “big bang
tests”. It is then possible to minimize late integration problems by
performing early integration and daily builds, since large complex
systems are then always tested in the right context. The focus here is
that if we keep the entire system up and running, the small (one day’s
change) would in theory make it easier to debug and locate new
additional faults, meaning that a consequence is longer fault location
for systems with many concurrent changes. Finding a particular fault
becomes difficult, since there is no way to tell if it is your change that
causes the problem or any of the other changes in the code from the
parallel tracks.

The more complex the software is, the more layering is needed for
control of the “system of systems”, The number of levels of testing in
an organization corresponds to both the complexity of the system and
the maturity of the test approach. We wish to minimize the time on
the critical time path for release, by a massive parallel development.
“Divide and conquer” seems to be the best approach when it comes to
testing, where every new integration step forms a new system. Stubs

36 On Test Design

2.3.3 Implementation Phase

The implementation phase is where the design is implemented into
code, and structured into programs according to the architecture. At
this phase, the test teams are also preparing the tests, either by
describing how they are manually performed in test procedures or by
defining test scripts to be executed by a test tool. Here other quality
enhancing techniques like static and dynamic code analysis, e.g. desk
checks and code reviews, can be performed. Creating tests cases
before the actual code implementation is a design principle referred to
as “test-driven development” (TDD) [16]. These are detailed
specifications of how to design the software, where software aims to
fulfil the specification. For TDD, the tests are actually executable –
but will fail, until the code is available to fulfil its intention. This also
means a new source of failure is introduced, a faulty test case. TDD is
used iteratively during development, but does not represent testing as
a measurement of quality, but as a design method especially including
refactoring, etc.

2.3.4 Component Test Phase

The execution phases starts when the code exists and together with
the component test phase. In TDD the benefit is that the component
test phase is hidden in the implementation phase. The test cases are
completed before the code is written which is an advantage.
Normally, test execution acts like a measurement of completion; when
all test cases are passed, the code is “completed”. The same happens
for TDD, but the amount of test cases is set beforehand cannot be
forgotten or skipped when schedules run late (which is probably one
of the more common reasons in industry of poor quality).
Nevertheless, TDD is mainly positive “normal” test cases that ensures
code works “according to intention”, and might not have any relations
with coverage (if not measured) or good test (if not measured).
Therefore, it is a good idea to highlight component test, so that it does
not get lost, and set defined targets of what quality should be achieved
of the component, and the component in the correct context,
regardless of when test cases are written. The component test phase is
a crucial step to make sure software parts are reliable. In Chapter 3
the benefit of Software Quality Rank (SQR) is described and how to

On Test Design 37

get some success with this improvement method for component test.
SQR [62][63][67] consists of steps for areas like static analysis and
dynamic analysis [9] and dynamic execution in addition to review, but
also defines implicit quality improvements like demanding sufficient
documentation, automated test suites, and targets coverage criteria
[220].

2.3.5 Integration and Integration Test Phase

Integration is done on as many levels as the software is divided in its
corresponding design. Applying good integration tests are difficult
and require careful analysis. This type of test execution is seldom
deliberate, but might be a part of having test cases traversing
components and systems, often in longer user scenarios or described
as use cases. Here, tests should already have been prepared for
execution. One way to minimize the impact of complexity is to
integrate and test bottom up, creating many levels of test, and thus
making sure each point of integration corresponds to responsibilities,
and can be shown to work. Another approach is doing what is
referred to as “top-down” integration, thus the system is created
(built) and integrated at very regular and frequent intervals. This is
also called “daily” or “frequent” builds, or sometimes “big bang
tests”. It is then possible to minimize late integration problems by
performing early integration and daily builds, since large complex
systems are then always tested in the right context. The focus here is
that if we keep the entire system up and running, the small (one day’s
change) would in theory make it easier to debug and locate new
additional faults, meaning that a consequence is longer fault location
for systems with many concurrent changes. Finding a particular fault
becomes difficult, since there is no way to tell if it is your change that
causes the problem or any of the other changes in the code from the
parallel tracks.

The more complex the software is, the more layering is needed for
control of the “system of systems”, The number of levels of testing in
an organization corresponds to both the complexity of the system and
the maturity of the test approach. We wish to minimize the time on
the critical time path for release, by a massive parallel development.
“Divide and conquer” seems to be the best approach when it comes to
testing, where every new integration step forms a new system. Stubs

38 On Test Design

built or simulated facilitate transition into the real integration. It is, of
course, possible to view integration problems as an indicator of a
series of problems, such as badly defined parameter limits in the
interfaces, unclear or dynamic binding of variables, timing and
resources issues, dependencies, etc.

2.3.6 System Test Phase & Acceptance Test
Phase

In these phases, the entire system is tested, including both functional
and non-functional aspects. The difference between the system test
phase and the acceptance test phase is in the goal of the testing and
the depth of testing. In each test execution phase, any group of test
cases can be performed: e.g. functional and non-functional tests.
These types of TDTs (See Chapter 13 for detailed descriptions)
should already be thought of during test case construction, and
planned for in the test analysis phase. At all above test levels, test
results are collected, analyzed and reported, which serves as a
measurement of the quality of the software, and also aids in
improving the quality by targeting areas to correct.

2.3.7 Advantages and Disadvantages with the
V-model

The advantage with the V-level is that it is simple and clarifies both
that testing takes effort, the concept of levels, and is at the same time
explaining that verification is taking place at the same level – and
with a specification from the “left side”. This is what the double-
edged arrows in Figure 2.6 mean. This view using the V-model of
software test in the development process is one of the reasons test
maturity seems to remain low in industry. Instead, test should be in
focus from the beginning of the development. It is even suggested that
the requirements are captured together with a tester at the customer
site, in the spirit of making sure that the requirements becomes
measurable and testable – and to the point. This could also be
implemented in another way, by making sure a representative of the
customer is a part of the development (and test) project. It is often
complained that most existing models are insufficient due to their

On Test Design 39

waterfall nature. In our current thinking, the ordering of these phases
is natural and always included. We note that sometimes these phases
might not be documented, or could be performed very fast and not
thoroughly thought through. It is hard to build a system without any
requirements. It is hard to demonstrate the code execution – without
the code being implemented and executable. The V-model should be
interpreted as an iterative model, and not a waterfall model.

2.4 W-model
In the V- model the early test phases are hidden and not highlighted in
the process, which makes it easy to ignore them by not providing
sufficient resources and time. In our description, we have
incorporated some of these aspects. In Figure 2.7, the adapted W-
model based on Herzlich [87] the test effort (and consequently the
rework done by development in the test execution phases) are much
better highlighted. The W-model clearly separates the requirement
phase and the analysis phase, even if both of them often occur in
parallel and interact with each other.

The early test phases added here in the W-model (Figure 2.7) are:
The preparation phases:

• Test Requirements

• Test Analysis

• Test Design

• Test Implementation

• Test (environment) Preparation

The new Project phases:

• Re-work

38 On Test Design

built or simulated facilitate transition into the real integration. It is, of
course, possible to view integration problems as an indicator of a
series of problems, such as badly defined parameter limits in the
interfaces, unclear or dynamic binding of variables, timing and
resources issues, dependencies, etc.

2.3.6 System Test Phase & Acceptance Test
Phase

In these phases, the entire system is tested, including both functional
and non-functional aspects. The difference between the system test
phase and the acceptance test phase is in the goal of the testing and
the depth of testing. In each test execution phase, any group of test
cases can be performed: e.g. functional and non-functional tests.
These types of TDTs (See Chapter 13 for detailed descriptions)
should already be thought of during test case construction, and
planned for in the test analysis phase. At all above test levels, test
results are collected, analyzed and reported, which serves as a
measurement of the quality of the software, and also aids in
improving the quality by targeting areas to correct.

2.3.7 Advantages and Disadvantages with the
V-model

The advantage with the V-level is that it is simple and clarifies both
that testing takes effort, the concept of levels, and is at the same time
explaining that verification is taking place at the same level – and
with a specification from the “left side”. This is what the double-
edged arrows in Figure 2.6 mean. This view using the V-model of
software test in the development process is one of the reasons test
maturity seems to remain low in industry. Instead, test should be in
focus from the beginning of the development. It is even suggested that
the requirements are captured together with a tester at the customer
site, in the spirit of making sure that the requirements becomes
measurable and testable – and to the point. This could also be
implemented in another way, by making sure a representative of the
customer is a part of the development (and test) project. It is often
complained that most existing models are insufficient due to their

On Test Design 39

waterfall nature. In our current thinking, the ordering of these phases
is natural and always included. We note that sometimes these phases
might not be documented, or could be performed very fast and not
thoroughly thought through. It is hard to build a system without any
requirements. It is hard to demonstrate the code execution – without
the code being implemented and executable. The V-model should be
interpreted as an iterative model, and not a waterfall model.

2.4 W-model
In the V- model the early test phases are hidden and not highlighted in
the process, which makes it easy to ignore them by not providing
sufficient resources and time. In our description, we have
incorporated some of these aspects. In Figure 2.7, the adapted W-
model based on Herzlich [87] the test effort (and consequently the
rework done by development in the test execution phases) are much
better highlighted. The W-model clearly separates the requirement
phase and the analysis phase, even if both of them often occur in
parallel and interact with each other.

The early test phases added here in the W-model (Figure 2.7) are:
The preparation phases:

• Test Requirements

• Test Analysis

• Test Design

• Test Implementation

• Test (environment) Preparation

The new Project phases:

• Re-work

40 On Test Design

Figure 2.7 The W-model adapted to industrial
parallel & iterative/incremental design

2.4.1 Test Requirements

Test Requirements are unique requirements outside the system
requirements, such as defining tools, test environment, and other
constraints that impact the software test. See more about this in the
presentation of the V-model in Section 2.3.

2.4.2 Test Analysis

The most important phase is the test analysis that contains a review of
the requirements of the system and software to be tested. This
includes defining the scope of the entire test and then limiting
expensive and time-consuming testing which is increasing the risk.
Defining the test goals and understanding constraints set by the
system, software, testability and development is important at this time
in a development project.

Requirements

High-level

Design

Implementation

Code

Component
Test

Low-level

Design

System Test

Acceptance

 Test

Customer
Requirements

High-level
Integration & Test

 Low-level
Integration

& Test

High- level
Test Design

Test-Driven

Low-level

Test Design

Re-work

Re-work

Re-work

Re-work Test
Implementation

Test Code

Test
(environment)

Analysis

Test

Requirements

Test Analysis

On Test Design 41

2.4.3 Test Design

Test Design means selecting the techniques, approaches and methods
for implementation. What should be done manually, what should be
automated, should we automate the implementation of the test case, or
only the execution? This defines how the entire execution is to be
done. This phase is the main focus for our research. The high-level
test design should also include creating architecture for the test cases
(and test systems, test approaches, etc.). The division of the
specification into high-level and low-level is often a reflection of the
system complexity and partitioning. Thus, for large complex systems,
an entire department of testers can be designated to focus only on one
aspect of the test, e.g. testing the performance under special
conditions. It is no use in doing this only for parts of the system, but
should be done as a final effort, to get adequate measurements.
Another group or department could show the stability and robustness,
and a third group test the functionality of the legacy aspects of a
system.
The more complex software is and the higher the quality requirement
is, there is typically an increased division of focus in testing and
specialist roles for different types of testers. This must be taken into
account when doing test design. This thesis has not focused on all
aspects of test design and approaches, as earlier described. The result
of test design is often the test specification, including specific
documents such as test environment specification and test tool
specifications. In addition one may need to define specifications on
data depending on the context of the test and the domain of the system
being tested.

2.4.4 Test Implementation

Test implementation means applying the test design to create an
instruction or automation of a specific execution of the system. The
implemented test case contains enough information to execute the
specific system from a specified point. The result of test
implementation (from conceptual to an explicit test case) is either text
or code. In IEEE Std. 829 [110] from 1998, the textual description is
called the test procedure and its corresponding code for automating
the test procedure is called a test script. Both are in a sense the

40 On Test Design

Figure 2.7 The W-model adapted to industrial
parallel & iterative/incremental design

2.4.1 Test Requirements

Test Requirements are unique requirements outside the system
requirements, such as defining tools, test environment, and other
constraints that impact the software test. See more about this in the
presentation of the V-model in Section 2.3.

2.4.2 Test Analysis

The most important phase is the test analysis that contains a review of
the requirements of the system and software to be tested. This
includes defining the scope of the entire test and then limiting
expensive and time-consuming testing which is increasing the risk.
Defining the test goals and understanding constraints set by the
system, software, testability and development is important at this time
in a development project.

Requirements

High-level

Design

Implementation

Code

Component
Test

Low-level

Design

System Test

Acceptance

 Test

Customer
Requirements

High-level
Integration & Test

 Low-level
Integration

& Test

High- level
Test Design

Test-Driven

Low-level

Test Design

Re-work

Re-work

Re-work

Re-work Test
Implementation

Test Code

Test
(environment)

Analysis

Test

Requirements

Test Analysis

On Test Design 41

2.4.3 Test Design

Test Design means selecting the techniques, approaches and methods
for implementation. What should be done manually, what should be
automated, should we automate the implementation of the test case, or
only the execution? This defines how the entire execution is to be
done. This phase is the main focus for our research. The high-level
test design should also include creating architecture for the test cases
(and test systems, test approaches, etc.). The division of the
specification into high-level and low-level is often a reflection of the
system complexity and partitioning. Thus, for large complex systems,
an entire department of testers can be designated to focus only on one
aspect of the test, e.g. testing the performance under special
conditions. It is no use in doing this only for parts of the system, but
should be done as a final effort, to get adequate measurements.
Another group or department could show the stability and robustness,
and a third group test the functionality of the legacy aspects of a
system.
The more complex software is and the higher the quality requirement
is, there is typically an increased division of focus in testing and
specialist roles for different types of testers. This must be taken into
account when doing test design. This thesis has not focused on all
aspects of test design and approaches, as earlier described. The result
of test design is often the test specification, including specific
documents such as test environment specification and test tool
specifications. In addition one may need to define specifications on
data depending on the context of the test and the domain of the system
being tested.

2.4.4 Test Implementation

Test implementation means applying the test design to create an
instruction or automation of a specific execution of the system. The
implemented test case contains enough information to execute the
specific system from a specified point. The result of test
implementation (from conceptual to an explicit test case) is either text
or code. In IEEE Std. 829 [110] from 1998, the textual description is
called the test procedure and its corresponding code for automating
the test procedure is called a test script. Both are in a sense the

42 On Test Design

implemented test case. A series of test scripts is called a test suite. It
is often the case that only manual test cases need a textual entry,
otherwise it is simpler to go directly from the test specification to the
test case script. The test case script, or test code should have
sufficient commenting, especially about expected input data (and
expected output), dependencies etc. A sufficient description could be
kept as header information in the test code. Note that some “test
specification” information on a higher level is often beneficial. It is
e.g. easy to forget assumptions, goals, dependencies and traceability
items; the latter should also be mirrored in the actual test case or
easily linked and found. One of the problems is keeping up with the
changes and version-handling of test code, since test cases evolve, but
should still be kept to work for each version of the software. In
practice, test code should be treated and viewed upon in the same
manner as the code, since it is a similar asset, with similar importance
for industrial software.

2.4.5 Test (Environment) Preparation

The Test Preparation phase contains setting up the specific context
and environment for testing. For most industrial work this is a very
challenging task. Different types of real scenarios need to be created
and mimicked, often in conjunction with specific hardware. Other
activities are setting up tools, preparing data in a “test” database, and
creating simulators and emulators. In principle, this phase can be done
at any time after the test analysis is complete and when the test design
has defined what and how to test. Test environments are an important
part of the test requirements. Often, when test is finding failures, the
reason can be traced to an inadequate test environment. The test
environment sometimes needs to be a complete replica of the real
environment, e.g. when testing space or medical equipment.

2.4.6 Re-work

Re-work is stated on the “design” side and is needed on all levels, and
has the generic meaning of representing the same action as on its left
side, but the focus is on locating faults and correcting them, which
also invokes rewriting documentation, specifications and many other

On Test Design 43

aspects of development. Since it is not easy to develop fault free
software, several iterations of refinement and quality improvements
are necessary. The amount of re-work is frequently underestimated,
causing a delay in releasing a system with the required quality, if
adequate resources are not sufficiently planned for. Tool support for
fast correction of faults speeds up this re-work phase. These activities
are well highlighted in the W-model.

2.4.7 Newer Test Process Views - Test Driven
Design

Software development processes are continuously improved and
changed, to challenge, change and make people motivated. Many
“new” testing trends are pre-dominant in industry today. Simple test
methods and approaches prevail, and these do not change fast. In
many systems, emphasis is spent on agile, fast and lightweight
processes. Some of these processes aim to minimize the testing effort,
which often implies to eliminate a formal or structured approach that
requires detailed specifications. These new processes also re-order
when and how to test. Using test cases as formal low-level design
specifications in a very iterative approach, including describing the
test of fulfillment, implementing the code, and then re-factor the code
is a part of Test Driven Design, TDD [17]. This seems to boost the
view of how test cases can be used for developers. Some
“unnecessary” tests will be created, since software development is an
iterative and creative process, and faults during intermediate steps
will also result in test cases. Well-performed TDD definitely
improves the developers initial quality due to the massive know-how
of testing that is needed to perform this type of development.
Limitations with TDD is that the test cases are in nature focused on
“making code work”, instead of testing to find faults (see later
discussions about positive and negative test in Chapter 9 and 13).
Using TDD does not take away the need for thorough testing after
development is complete.

New “Agile” processes, “Scrum” or similar processes, often ignore
the fact that independent testing is still needed, or do not put enough
focus on it, even suggesting the testers role might diminish or even
endanger the tester’s role during organizational transition to agile

42 On Test Design

implemented test case. A series of test scripts is called a test suite. It
is often the case that only manual test cases need a textual entry,
otherwise it is simpler to go directly from the test specification to the
test case script. The test case script, or test code should have
sufficient commenting, especially about expected input data (and
expected output), dependencies etc. A sufficient description could be
kept as header information in the test code. Note that some “test
specification” information on a higher level is often beneficial. It is
e.g. easy to forget assumptions, goals, dependencies and traceability
items; the latter should also be mirrored in the actual test case or
easily linked and found. One of the problems is keeping up with the
changes and version-handling of test code, since test cases evolve, but
should still be kept to work for each version of the software. In
practice, test code should be treated and viewed upon in the same
manner as the code, since it is a similar asset, with similar importance
for industrial software.

2.4.5 Test (Environment) Preparation

The Test Preparation phase contains setting up the specific context
and environment for testing. For most industrial work this is a very
challenging task. Different types of real scenarios need to be created
and mimicked, often in conjunction with specific hardware. Other
activities are setting up tools, preparing data in a “test” database, and
creating simulators and emulators. In principle, this phase can be done
at any time after the test analysis is complete and when the test design
has defined what and how to test. Test environments are an important
part of the test requirements. Often, when test is finding failures, the
reason can be traced to an inadequate test environment. The test
environment sometimes needs to be a complete replica of the real
environment, e.g. when testing space or medical equipment.

2.4.6 Re-work

Re-work is stated on the “design” side and is needed on all levels, and
has the generic meaning of representing the same action as on its left
side, but the focus is on locating faults and correcting them, which
also invokes rewriting documentation, specifications and many other

On Test Design 43

aspects of development. Since it is not easy to develop fault free
software, several iterations of refinement and quality improvements
are necessary. The amount of re-work is frequently underestimated,
causing a delay in releasing a system with the required quality, if
adequate resources are not sufficiently planned for. Tool support for
fast correction of faults speeds up this re-work phase. These activities
are well highlighted in the W-model.

2.4.7 Newer Test Process Views - Test Driven
Design

Software development processes are continuously improved and
changed, to challenge, change and make people motivated. Many
“new” testing trends are pre-dominant in industry today. Simple test
methods and approaches prevail, and these do not change fast. In
many systems, emphasis is spent on agile, fast and lightweight
processes. Some of these processes aim to minimize the testing effort,
which often implies to eliminate a formal or structured approach that
requires detailed specifications. These new processes also re-order
when and how to test. Using test cases as formal low-level design
specifications in a very iterative approach, including describing the
test of fulfillment, implementing the code, and then re-factor the code
is a part of Test Driven Design, TDD [17]. This seems to boost the
view of how test cases can be used for developers. Some
“unnecessary” tests will be created, since software development is an
iterative and creative process, and faults during intermediate steps
will also result in test cases. Well-performed TDD definitely
improves the developers initial quality due to the massive know-how
of testing that is needed to perform this type of development.
Limitations with TDD is that the test cases are in nature focused on
“making code work”, instead of testing to find faults (see later
discussions about positive and negative test in Chapter 9 and 13).
Using TDD does not take away the need for thorough testing after
development is complete.

New “Agile” processes, “Scrum” or similar processes, often ignore
the fact that independent testing is still needed, or do not put enough
focus on it, even suggesting the testers role might diminish or even
endanger the tester’s role during organizational transition to agile

44 On Test Design

[35]. Ignoring substantial testing after a system’s components are
merged into a complex system is risky and may result in poor quality
of the system. This does not mean that the ambition of TDD (Test
Driven Development) is in anyway wrong, since all ambitions making
sure that developers improve their own testing, will be improvement
to quality. This is usually based on the simple fact that doing the test
cases first will under industrial time pressure mean that test are not
skipped in the last minute, since it is easier to skip a test, than
completing the code. It is unfortunately very risky to not spend time
evaluating the coverage and do other quality improvement tasks, e.g.
refactoring, to improve the code quality after the first attempts.

2.5 The Plethora of Publications in
Software Test and Test Design
The area of test design and TDTs has been a focus of publication in
software testing for more than 30 years. Juristo et al. [128] describes
an overview of 25 years of testing (2004), and even if very selective,
gives an insight of an area lacking substantial research. Even if the
number of books and articles are continually increasing, the area have
instead of making clarifications, been drowned by terminology and
interpretation problems that relate to the different systems under test,
the human innovation, and the need to avoid using the same names
dues to lack of knowledge, and – if knowledge exists – based on the
fact that copyright laws prevents definitions to remain exactly the
same. The need to sell “old” as new with different names, context and
focus becomes a way to “renew” the area. Instead of making it easier
to comprehend, we get a dilution of the content. This makes TDTs,
and test design particularly difficult – since the exact interpretations
and definitions are often lacking, but assumed – and can vary as much
as there are different techniques. Examples of this can be found in the
following books:[4][25][26][34][42][43][78][87][96][99][135][127]
[132][189][204][198].

There are few researchers who have aimed at making order in this
plethora. However, this requires extensive know-how of actual
testing, which is rare in many academic institutions. The focus is
often on one technique or approach that is compared with either
random or an “as is” (unmeasured) test suite. It is often not feasible to

On Test Design 45

explore series of techniques, and many of them seem beyond the time-
limits or scope-limits of a PhD. Unfortunately, the lack of deep know-
how results in a “new” technique being considered as an original
work, even if it in many aspects is “exactly” the same as an existing
technique, in the sense that it results in the same test cases. Instead an
identical or variant of an existing technique has been created, maybe
only different in representation, style or human involvement.

TDTs were first mentioned by Myers [163]. The seminal structure is
presented in the book “Software Test Techniques” by Boris Beizer
[18], although he is not the sole originator of these techniques. A
novel attempt to define negative testing techniques can be found
(based on usage of systems) in Whittaker [211]. We have dedicated
Chapter 9 to sort out the negative usage approach from traditional
view of TDTs. Unfortunately, sorting out seminal work for all
techniques is a PhD in itself.

In modern times, few researchers have attempted to make order in this
plethora of TDTs, and what stands out are in particular Vegas [203]
work, that we will partly contrast ourselves to in Chapter 13.
Murnane’s [157][158][159] work, has been instrumental to view the
techniques in a different light, thus clear definitions of them is a
problem. Furthermore there are many research works for specific
groups, e.g., recent work from McMinn [150] with the search-based
testing techniques as a specific focus or Jia et. al. on mutation testing
[124]. Other relevant works relating to each of the studies are
discussed is each chapter/study, respectively.

2.6 Historic Classifications
The most commonly used differentiator of TDTs that seems to be
dividing techniques into black-box and white-box testing. These
concepts predate software testing, and black-box has a common
interpretation of not looking inside “a box” but merely observing
input and output behavior. White-box was intended to be the opposite,
full access to whatever is “inside” the box.

One of the more influential books about Test Techniques (TDTs) is
by Boris Beizer [18] and his follow-up book is named just “Black-box
techniques” [21]. “White-box” became figuratively speaking the name
for using the code itself for the technique. Since you cannot see

44 On Test Design

[35]. Ignoring substantial testing after a system’s components are
merged into a complex system is risky and may result in poor quality
of the system. This does not mean that the ambition of TDD (Test
Driven Development) is in anyway wrong, since all ambitions making
sure that developers improve their own testing, will be improvement
to quality. This is usually based on the simple fact that doing the test
cases first will under industrial time pressure mean that test are not
skipped in the last minute, since it is easier to skip a test, than
completing the code. It is unfortunately very risky to not spend time
evaluating the coverage and do other quality improvement tasks, e.g.
refactoring, to improve the code quality after the first attempts.

2.5 The Plethora of Publications in
Software Test and Test Design
The area of test design and TDTs has been a focus of publication in
software testing for more than 30 years. Juristo et al. [128] describes
an overview of 25 years of testing (2004), and even if very selective,
gives an insight of an area lacking substantial research. Even if the
number of books and articles are continually increasing, the area have
instead of making clarifications, been drowned by terminology and
interpretation problems that relate to the different systems under test,
the human innovation, and the need to avoid using the same names
dues to lack of knowledge, and – if knowledge exists – based on the
fact that copyright laws prevents definitions to remain exactly the
same. The need to sell “old” as new with different names, context and
focus becomes a way to “renew” the area. Instead of making it easier
to comprehend, we get a dilution of the content. This makes TDTs,
and test design particularly difficult – since the exact interpretations
and definitions are often lacking, but assumed – and can vary as much
as there are different techniques. Examples of this can be found in the
following books:[4][25][26][34][42][43][78][87][96][99][135][127]
[132][189][204][198].

There are few researchers who have aimed at making order in this
plethora. However, this requires extensive know-how of actual
testing, which is rare in many academic institutions. The focus is
often on one technique or approach that is compared with either
random or an “as is” (unmeasured) test suite. It is often not feasible to

On Test Design 45

explore series of techniques, and many of them seem beyond the time-
limits or scope-limits of a PhD. Unfortunately, the lack of deep know-
how results in a “new” technique being considered as an original
work, even if it in many aspects is “exactly” the same as an existing
technique, in the sense that it results in the same test cases. Instead an
identical or variant of an existing technique has been created, maybe
only different in representation, style or human involvement.

TDTs were first mentioned by Myers [163]. The seminal structure is
presented in the book “Software Test Techniques” by Boris Beizer
[18], although he is not the sole originator of these techniques. A
novel attempt to define negative testing techniques can be found
(based on usage of systems) in Whittaker [211]. We have dedicated
Chapter 9 to sort out the negative usage approach from traditional
view of TDTs. Unfortunately, sorting out seminal work for all
techniques is a PhD in itself.

In modern times, few researchers have attempted to make order in this
plethora of TDTs, and what stands out are in particular Vegas [203]
work, that we will partly contrast ourselves to in Chapter 13.
Murnane’s [157][158][159] work, has been instrumental to view the
techniques in a different light, thus clear definitions of them is a
problem. Furthermore there are many research works for specific
groups, e.g., recent work from McMinn [150] with the search-based
testing techniques as a specific focus or Jia et. al. on mutation testing
[124]. Other relevant works relating to each of the studies are
discussed is each chapter/study, respectively.

2.6 Historic Classifications
The most commonly used differentiator of TDTs that seems to be
dividing techniques into black-box and white-box testing. These
concepts predate software testing, and black-box has a common
interpretation of not looking inside “a box” but merely observing
input and output behavior. White-box was intended to be the opposite,
full access to whatever is “inside” the box.

One of the more influential books about Test Techniques (TDTs) is
by Boris Beizer [18] and his follow-up book is named just “Black-box
techniques” [21]. “White-box” became figuratively speaking the name
for using the code itself for the technique. Since you cannot see

46 On Test Design

through a white-box either, the term glass-box and clear-box were
coined. And “new” meanings became attached. The glass-box gives
the possibility to view the inside, but no possibility to change the
software (often the case with third party software, where support-
licenses cease if code is tampered with in any way), and clear-box –
which would be the full access to the code in all aspects.

The problem with black-box and white-box used in the context of
TDTs is that the meanings changed over time, ever so slightly: Black-
box became techniques, where only input and output behavior was
interesting (often the subtext without regard for how it has been
implemented). The most common interpretation of white-box
techniques became synonymous with code coverage techniques.

Hence, this was often interpreted as white-box testing (TDTs) are
TDTs used by developers (since they also possess insight to their
software code, structure etc) and black-box are TDTs that is only
concerned with 1) input and 2) targeted at testers which assumed to
have no insight – or should not have insight in the implementation
when designing their test cases.

Some would go so far and read “all goals of testing” into black-box
testing, which is of course skewing the initial message. This assigned
meaning has unfortunate impacts, and created a testing approach that
is ignorant of internal structure, and developers that bother less about
behavior. It is possible that this fuels the popularity of development
and test where people work together, and requiring both roles to have
as good understanding of both aspects of software.

Developers need also to test input-and output behavior of their code,
which makes every object a system in it-self, useful for “black-box
tests”, and every tester can test better knowing structure and
implementation of the system – as well as complementing with
different types of coverage. This we could conclude as a result in two
of our studies, both Study 1 in Chapter 3, and Study 8 in Chapter 10.

Since these concepts originally came from an observation viewpoint,
what could be observed of the software (or hardware). It is imperative
that one should understand what is “inside” the box, even if the
reachability is through the interface, since the intention is to make
better test cases. Taking this viewpoint one step further – test should
propose requirements on internal states, values, and parameters to
improve the testability of the interface.

On Test Design 47

Due to this unfortunate use of the original concept, it is not fruitful to
linger to them. This is also concluded in a book by Ammann and
Offutt [4] who are referring to these concepts as “old-fashioned”.

Therefore newer approaches are better – since they disregard role and
level, but focus on the concept of the technique. This would then be
“functional” with the subgroups “input-related” and “path-related
(structural)” and “functional” vs. “non-functional”, which are views,
proposes an entire new type of organization of the techniques. We can
already see this view separating, and people want to bring in
“experience based” techniques. Since these are un-measurable,
undefined and largely ad hoc, our best guess is that this is a mix with
usage techniques.

In Chapter 2.5 below we propose a structure for TDTs as a starting
position for some of the more well-known techniques. Our selection
has a personal bias and in no way intended to be complete in the
plethora of techniques that exists.

Many of these test approaches can be used at any level of testing, but
does not have the same strength and purpose at all levels. Structure
aims to define some form of “order”, structure that can be either
“graphed” or “path” or countable in a linear fashion or parallel
(linear) in contrast to lack of order, often random or ad hoc. Some
confuse structural test to only be looking at the code structure.

Structural test it is not solely defined as path, which is easy to assume.
Structural could also be defined as anatomy (architectural hierarchy),
or any type of order. E.g. every menu item, every GUI-windows,
would be a possible structure. Other examples of structures are in
relation to a specific order of tasks in a process. This definition of
structural test is especially useful when testing parallel executions,
where we must differentiate the actual execution from the code and
from the system usage. Testing the behavior (functional testing) is
possible whilst doing it in a structural fashion, and should be kept in
mind when approaching fulfillment of e.g. coverage goals. These
simple definitions already have a series of disruptions, when a
standard refers a characteristic as a “functional characteristic”, e.g.
functional security [117], mixing the functional aspects with the non-
functional.

46 On Test Design

through a white-box either, the term glass-box and clear-box were
coined. And “new” meanings became attached. The glass-box gives
the possibility to view the inside, but no possibility to change the
software (often the case with third party software, where support-
licenses cease if code is tampered with in any way), and clear-box –
which would be the full access to the code in all aspects.

The problem with black-box and white-box used in the context of
TDTs is that the meanings changed over time, ever so slightly: Black-
box became techniques, where only input and output behavior was
interesting (often the subtext without regard for how it has been
implemented). The most common interpretation of white-box
techniques became synonymous with code coverage techniques.

Hence, this was often interpreted as white-box testing (TDTs) are
TDTs used by developers (since they also possess insight to their
software code, structure etc) and black-box are TDTs that is only
concerned with 1) input and 2) targeted at testers which assumed to
have no insight – or should not have insight in the implementation
when designing their test cases.

Some would go so far and read “all goals of testing” into black-box
testing, which is of course skewing the initial message. This assigned
meaning has unfortunate impacts, and created a testing approach that
is ignorant of internal structure, and developers that bother less about
behavior. It is possible that this fuels the popularity of development
and test where people work together, and requiring both roles to have
as good understanding of both aspects of software.

Developers need also to test input-and output behavior of their code,
which makes every object a system in it-self, useful for “black-box
tests”, and every tester can test better knowing structure and
implementation of the system – as well as complementing with
different types of coverage. This we could conclude as a result in two
of our studies, both Study 1 in Chapter 3, and Study 8 in Chapter 10.

Since these concepts originally came from an observation viewpoint,
what could be observed of the software (or hardware). It is imperative
that one should understand what is “inside” the box, even if the
reachability is through the interface, since the intention is to make
better test cases. Taking this viewpoint one step further – test should
propose requirements on internal states, values, and parameters to
improve the testability of the interface.

On Test Design 47

Due to this unfortunate use of the original concept, it is not fruitful to
linger to them. This is also concluded in a book by Ammann and
Offutt [4] who are referring to these concepts as “old-fashioned”.

Therefore newer approaches are better – since they disregard role and
level, but focus on the concept of the technique. This would then be
“functional” with the subgroups “input-related” and “path-related
(structural)” and “functional” vs. “non-functional”, which are views,
proposes an entire new type of organization of the techniques. We can
already see this view separating, and people want to bring in
“experience based” techniques. Since these are un-measurable,
undefined and largely ad hoc, our best guess is that this is a mix with
usage techniques.

In Chapter 2.5 below we propose a structure for TDTs as a starting
position for some of the more well-known techniques. Our selection
has a personal bias and in no way intended to be complete in the
plethora of techniques that exists.

Many of these test approaches can be used at any level of testing, but
does not have the same strength and purpose at all levels. Structure
aims to define some form of “order”, structure that can be either
“graphed” or “path” or countable in a linear fashion or parallel
(linear) in contrast to lack of order, often random or ad hoc. Some
confuse structural test to only be looking at the code structure.

Structural test it is not solely defined as path, which is easy to assume.
Structural could also be defined as anatomy (architectural hierarchy),
or any type of order. E.g. every menu item, every GUI-windows,
would be a possible structure. Other examples of structures are in
relation to a specific order of tasks in a process. This definition of
structural test is especially useful when testing parallel executions,
where we must differentiate the actual execution from the code and
from the system usage. Testing the behavior (functional testing) is
possible whilst doing it in a structural fashion, and should be kept in
mind when approaching fulfillment of e.g. coverage goals. These
simple definitions already have a series of disruptions, when a
standard refers a characteristic as a “functional characteristic”, e.g.
functional security [117], mixing the functional aspects with the non-
functional.

