
Model Based Testing Eduard Paul Enoiu
Lecture CDT414

December 2014

@eduardpaulenoiu; www.testinghabits.org

Before we start
● What do I know about Model Based Testing, anyway?

● I’ve written programs and tested them (sometimes by using models)

● So have most of you, I would bet

● Split my time at Mälardalen University and Bombardier
Transportation between model-based testing and automated testing
research.

● I am the co-author of the CompleteTest testing tool together with Adnan.

2

● Overview of Model-Based Testing

● Modelling Software

● Strategies for Generating Tests using Models

● Executing Tests Generated from Models

● Summary and Conclusions

Today

3

Read All About It

● No textbook for this class

● Books I like that have something important to say about
model based testing:

● The Practice of Programming, Kernighan and Pike

● Practical Model-Based Testing: A Tools Approach,
Mark Utting, Bruno Legeard

● Software Testing and Analysis, Pezze and Young

● Try Chapter 14

● I like it myself

● Recommended by colleagues who’ve taught classes on
testing (and are first-rate testing researchers)

● Book is thorough and cleverly organized, provokes some
real thought about how to test programs and models

4

Overview of Model-Based Testing

Basic Definitions:
Model Based Testing

● What is Model Based Testing?

● Running a program based on a spec (a.k.a. model)

● In order to find faults

● a.k.a. defects

● a.k.a. errors

● a.k.a. flaws

● a.k.a. BUGS

6

Benefits of Model-Based Testing

Better tests
Lower cost

Early detection of requirements errors

Traceability Automation

Less overlap among tests

Model Based Testing Process

8

Model Criterion

Test

Requirements

Abstract

Tests
Glue

Info
Executable

Tests

Test

Execution
Test

Reports

Test

Oracle

Lots of research and tools for:
• Test criteria
• Creating models
• Executing tests

Modeling Software

Models

• A reduced/abstract representation of a system that highlights the
properties of interest from a given viewpoint

• Unnecessary details are removed

• Highlight subject of interest

• To deal with complexity of systems development

• Abstract to focus on a particular point of interest

• It facilitates studying and understanding the behavior of complex
systems

• To improve communication

• A good model is often better than a textual description

• To reduce development flaws

• Detecting errors early in e.g. requirements

10

Model of a Castle

11

Model of an Actor

12

Useful models

 Abstract

 Emphasize important aspects while removing irrelevant ones

 Understandable

 Expressed in a form that is readily understood by observers

 Accurate

 Faithfully represents the modeled system

 Predictive

 Can be used to answer questions about the modeled system

 Inexpensive

 Cheaper to construct and study than the modeled system

13

Models: Definition

● A graph G is a model composed of

● N: A set of nodes or vertices

● A: A set of arcs or edges connecting these nodes

● Graphs represent relationships between objects
for which the nodes stand

14

Models: Definition

● Label: an identifier
that names an
element of a graph.
The arc from A to B
is labeled a.

● Path: a sequence of
arcs such as any two
adjacent arcs in the
sequence share a
common node.

15

A B
a

A F

B

C D

E

a

b
c

d

e

f

g

h

<a, d, f, h, e> is a path

Examples of models

 Structural models

 UML class diagrams

 Functional models

 State/transition diagrams

 Finte state automata/machines

 Control models

 Matlab/Simulink

 Function Block Diagrams

 Timing models

 Timed automata

 Simulink

16

SigB

SigA

SigC

FB SigX

Models: Uses

● Maps

● Traffic system dependencies

● Computer networks

● Control flow graphs

● Data flow graphs

● Routine call graphs

17

State Machines

● A State is an abstraction of values of those
variables of a software system that govern the way
it works. In particular, a state defines:

● The inputs that can be applied by the user when the
software is in the state

● The manner in which an input affects the system

● Output

● Other response (change of states, internal variable
value change, etc…)

18

Finite State Machines

● A finite state machine is an abstract
mathematical structure that is composed
of:
● A finite set of states
● One of these states is the initial state. A state machine

always starts in an initial state

● A number of these states are designated as final states

● A machine terminates successfully if it is in a final
state

● A finite set of inputs

● A complete definition of how the machine makes
a transition from one state to another

19

Modeling Example

●Light switch:

● Requirements: If a user quickly presses the light
control twice, then the light should get brighter; on
the other hand, if the user slowly presses the light
control twice, the light should turn off.

20

press
light

Modeling Example

●Light switch:

● Requirements: If a user quickly presses the light
control twice, then the light should get brighter; on
the other hand, if the user slowly presses the light
control twice, the light should turn off.

21

Off Light Bright
press

press

press

press

Modeling Example

● Requirements: If a user quickly presses the light
control twice, then the light should get brighter; on
the other hand, if the user slowly presses the light
control twice, the light should turn off.

● Solution: clock x

22

Off Light Bright
press

press

press

press

x≤3

x>3

x:=0

Strategies for Generating Tests

using Models

The Big Picture

● Testing (almost always) is an attempt to

● Cover some measure of a structure

● Nodes of a graph (e.g., light switch example)

● Inputs that give different outputs (e.g., press)

● All possible inputs

● Logical expression evaluations

● Predicates over program variables

● Pairs of where a variable is defined and where it is used (data
flow)

● Usually, we can’t even guarantee that coverage directly
correlates to more bugs found.

Off Light Bright

press

press

press

press

24

From Models to Test Cases

Off Light Bright

press

press

press

press

x≤3

x>3

x:=0

RQ1: Check that the
light can become bright.

Spec a.k.a. Light Controller Model Software Implementation

press

output

state

TC1: start
input: press output: (Light,0)
input: press output: (Bright, 3)
stop 25

”Covering” Finite State Machines

● State Coverage

● Every state in the model should be visited by at least one test

● Transition Coverage

● Every transition between states should be traversed by at least
one test case

Off Light Bright

press

press

press

press

x≤3

x>3

x:=0

26

Strategies for searching trough models

● Model-Based Testing can focus on exploring lots of

● Executions

● Random testing

● Paths

● Concolic testing

● States?

● Model checking

27

Model Checking

● A model checker is a tool for exploring a state space

● Basic idea: generate every reachable state of a transition
system

● Think of states as nodes in a graph

● Directed edges mean “from this state, this is a possible next
state of the program”

● Multiple outgoing edges where there is input/thread
scheduling/other nondeterminism

28

Model Checking

● We will be looking at one particular kind of model checking

● Using UPPAAL

● To explore the state spaces of programs

● Other model checkers used for this approach to testing

● SPIN (C programs)

● Java PathFinder 2 (NASA Ames)

● Bogor (U Kansas/Nebraska)

29

Model Checking

● Model-checking by executing the program

● Backtracking search for all states

State already visited!
Backtrack and try a
different operation Done with test!

Backtrack and try a
different operation

CFG

State already visited!
Backtrack and try a
different operation

Will explore, as a side-effect,
many executions and many paths,
but the goal is to explore states

30

Exercise: Test Generation using Models

● Example

● Testing mission scenarios

in a video game.

● Vikings crossing a bridge

5
10

20

25

31

Exercise during break: Test Generation

5

10

20

25

Unsafe Side

Safe Side

If possible find a test that shows
that all four vikings

can reach safe side in 60 min.

torch

night

damaged bridge (max 2 vikings) with mines

32

My solution to the exercise

Unsafe
5,10,20,25

Safe

20,25 5,10
5,10

20,25,10 10
5

10

10

10 20,25
5,20,25

25

10,5
5

20,25

5

5,10
5,10,20,25

10

Exercise: Test Generation using Models

● Can be modeled and solved with model-checking

UNSAFE

5 10 20 25

Mines

34

Executing Tests Generated from

Models

Model-Based Testing: Conformance

● Does the behavior of he implementation comply to that
of the specification?

Implementation Relation
36

Model Test
Generator

Tool

Tests Test
Execution

Tool

Test Mapping

Driver

Implementation

Pass
Fail

Test Generation and Execution

● Use traces as tests by using a model checker

System Model

Test Generator
Trace

Some, Random
Shortest, Fastest

Test purpose

lampControl.xml

E<> Lamp.Bright

testLamp.testCase

Model-Based Testing Exercise

● Yggdrasil is a test-case generation feature of UPPAAL

● I will explain model-based testing by developing and
testing a simple Lamp system with on/off capabilities.

● I should write a:

● A model, decorated with test-code.

● A correct implementation of the system

● The system implemented in Java

● Execution scripts

Model-Based Testing Exercise

System Model

Test Generator

User Model App class

App implements Model

generate

open
Executable Test

run

Pass/Fail

Model-Based Testing Exercise
with Mutation
● Mutation testing is used to design new tests and evaluate

the quality of existing tests. Mutation testing involves
modifying a program in small ways. (1978, DeMillo and Lipton)

● Each mutated version is called a mutant and tests detect and
reject mutants by causing the behavior of the original version
to differ from the mutant. This is called killing the mutant.

● The purpose is to help the tester develop effective tests or
locate weaknesses in the tests used for the program or in
sections of the code that are seldom or never accessed
during execution.

Model-Based Testing Exercise
with Mutation
● Yggdrasil is a test-case generation feature of UPPAAL

● I will explain model-based testing by developing and
testing a simple Lamp system with on/off capabilities.

● I should write a:

● A model, decorated with test-code.

● A mutant with an implementation error

● The mutant is implemented in Java

● Execution scripts

Model-Based Testing
Exercise with Mutation

System Model

Test Generator

User Model

App class

App implements Model

generate

open
Executable Test

run

Pass/Fail

Mutant class

mutate

Home Assignment (optional)

● Download Windows, Linux or Mac, version 4.1.19 of
UPPAAL from uppaal.org

● Extend the lamp switch such that it works as follows

● Implement it in Java using the template and generate
executable tests using Yggdrasil and UPPAAL:

● using depth search and a depth of 20.

● Using a test property: Lamp becomes Bright

Off Light Bright

press

press

press

press

Summary and Conclusions

Advantages

● Automate generation of

● Large suites of tests and lengthy tests

● Complicated input sequences

● Likely to expose failures

● Caused by weird combinations of inputs

45

Advantages

● Provides an additional basis for

● Coverage-based evaluation of test progress

● Measurement quality of the product

● A model is a precise communication tool

● Good vehicle of presentation to non-technical staff

● While building a model

● Develop a better understanding of SUT

● Find many bugs while exploring SUT

● Compare versions of the product

46

Choosing Models to Fit Needs

● Highly dependent on application type

● HTML processing component in a browser

● Calculator mathematical expressions

● State rich systems: GUI & Phone systems

● Parallel systems

● Different models for different system aspects

● Combinations of models are more useful

● Try to reuse models from design &
requirements analysis

47

Tool Support
● Try the following tools:

● UPPAAL (used for embedded systems)
● Free to use for academics like you

● Has support for model-based testing of Java code

● Spec Explorer (model programs in C#) Free to use
● Is a Visual Studio Power Tool.

● 100 testers use it on a daily basis at Microsoft (Campbell 2005, FM)

● CompleteTest (you used it in the lab for automatically

generating tests for FBDs)
● Is used by Bombardier engineers for unit testing

(www.completeTest.org)

● Coq Model Checker (used for verifying OS kernels) 48

http://www.completetest.org/

Eduard Paul EnoiuThank you

@eduardpaulenoiu; www.testinghabits.org

