
03/12/14

23

Graph-Based Criteria:
Subsumption Hierarchy

Complete path

Prime path

All DU-paths

All uses

All definitions

Edge-pair

Edge

Node

ime papath pathpa

Edge-p

pa

Edge-p
DU-paths

All us

ge

Node

defifinitions
EdEdgeEdge

fini

●  A -> B indicates that A
subsumes B

● Question 2: The
subsumption hierarcy is

defined for fully satisfied
criteria (i.e., 100% coverage).

Does it hold for any degree of
coverage? For example, does

80% edge coverage imply at

least 80% node coverage?

Logic-Based Adequacy Criteria

03/12/14

24

Logic-Based Adequacy Criteria Intro.

● Consider the following statement:

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

Logic-Based Adequacy Criteria Intro.

● Consider the following statement:

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

This is a predicate, i.e., an
expression that evaluates to a

boolean value

)

03/12/14

25

Logic-Based Adequacy Criteria Intro.

● Consider the following statement:

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

A predicate is made up from one
or more clauses, i.e., predicates

that contain no boolean
operators (AND, OR, etc…)

(a))) (4 4 (c(c

Logic-Based Adequacy Criteria Intro.

● Consider the following statement:

● Also, remember, logical expressions are a fundamental
part of programming that determine the flow of control
in any type of software

● Using predicates and clauses, a whole new family of
structural adequacy criteria can be defined

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

03/12/14

26

Logic-Based Adequacy Criteria

Definitions and examples

Logic-Based Adequacy Criteria

Predicate coverage

The set of coverage items contains two requirements for

each p in P: p evaluates to true, and p evaluates to false.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

03/12/14

27

Logic-Based Adequacy Criteria

Predicate coverage

The set of coverage items contains two requirements for

each p in P: p evaluates to true, and p evaluates to false.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

P: The set of all predicates in the software under
test.

Logic-Based Adequacy Criteria

Predicate coverage

The set of coverage items contains two requirements for

each p in P: p evaluates to true, and p evaluates to false.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

Let’s call this p

03/12/14

28

Logic-Based Adequacy Criteria

Predicate coverage

The set of coverage items contains two requirements for

each p in P: p evaluates to true, and p evaluates to false.

Set of coverage items:

{p evaluates to true, p evaluates to false}

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

Logic-Based Adequacy Criteria

Clause coverage

Ammann and Offutt: ”For each c in C,
TR contains two requirements: c

evaluates to true, and c evaluates to
false.”

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

03/12/14

29

Logic-Based Adequacy Criteria

Clause coverage

The set of coverage items contains two
requirements for each c in C: c

evaluates to true, and c evaluates to
false.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

C: The set of all clauses in P.

Logic-Based Adequacy
Criteria

Clause coverage

The set of coverage items contains two
requirements for each c in C: c

evaluates to true, and c evaluates to
false.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE

03/12/14

30

Logic-Based Adequacy
Criteria

Combinatorial coverage

For each p in P, the set of coverage
items contains all possible

combinations of truth values of the
clauses of p.

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

TRUE TRUE TRUE TRUE

TRUE TRUE TRUE FALSE

TRUE TRUE FALSE TRUE

TRUE TRUE FALSE FALSE

TRUE FALSE TRUE TRUE

TRUE FALSE TRUE FALSE

TRUE FALSE FALSE TRUE

TRUE FALSE FALSE FALSE

FALSE TRUE TRUE TRUE

FALSE TRUE TRUE FALSE

FALSE TRUE FALSE TRUE

FALSE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE

FALSE FALSE TRUE FALSE

FALSE FALSE FALSE TRUE

FALSE FALSE FALSE FALSE

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

Problems

In many cases, predicate and clause

coverage are too ”simple”, and
combinatorial coverage is way too

expensive.

03/12/14

31

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

Solution: Active Clause Criteria

Basic idea: Make each individual

clause affect the outcome of the
predicate

Active clause criteria are also known
as MC/DC, and are required, e.g., in

testing of aviation software.

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

Solution: Active Clause Criteria

Basic idea: Make each individual

clause affect the outcome of the
predicate

Active clause criteria are also known
as MC/DC, and are required, e.g., in

testing of aviation software.

There is an ambiguity here

The definition of MC/DC can actually
be interpreted in three different ways

03/12/14

32

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a

Restricted Active Clause

Coverage

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

We expand the table with
one more column that shows
the boolean evaluation of the
entire predicate p

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

03/12/14

33

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

Then we initially consider a>b the
major clause in p. We want to
find values of the other clauses such
that a change from TRUE to FALSE
in the major clause would change

the value of the entire predicate

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

03/12/14

34

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

Then the process is repeated for all
clauses in p (all of them get to act as
major clause)

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

TRUE TRUE FALSE FALSE TRUE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

03/12/14

35

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

TRUE TRUE FALSE FALSE TRUE

FALSE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

TRUE TRUE FALSE FALSE TRUE

FALSE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE

FALSE FALSE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

03/12/14

36

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

TRUE TRUE FALSE FALSE TRUE

FALSE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE

FALSE FALSE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE

FALSE FALSE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

03/12/14

37

Logic-Based Adequacy
Criteria

if ((a>b AND c==10) OR (d<4 AND (c!=a)))

a>b c==10 d<4 c!=a p

TRUE TRUE FALSE FALSE TRUE

FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE

FALSE FALSE TRUE FALSE FALSE

Restricted Active Clause

Coverage: Example

For each predicate p:
For each clause ci in p:

1. Let ci be the major clause of p.

2. Choose values of minor clauses such
that ci determines p.

3. The set of coverage items includes

two requirements: ci evaluates to true
and ci evaluates to false (while all

minor clauses remain unchanged).

Logic-Based Criteria:
Subsumption Hierarchy

Combinatorial

Restricted active clause

Correlated active clause

General active clause

Clause

Restricted inactive clause

Predicate

ed active cle clause

Restricted inact

e cl

ed active clause

ral active c

ClauClause PredClause

●  A -> B indicates that A
subsumes B

General inactive clause

Predicat

03/12/14

38

Important Considerations for
Structural Testing

Exercise 1: Coverage

int function(int x, int y, int z)

{

 if (x<y && x<z)

 return x;

 else if (y<x && y<z)

 return y;

 else

 return z;

}

Question:

What does this function do?

03/12/14

39

Exercise 2: Coverage of test suite?

int function(int x, int y, int z)

{

 if (x<y && x<z)

 return x;

 else if (y<x && y<z)

 return y;

 else

 return z;

}

Test suite:  

x=1, y=2, z=3, exp 1, output 1  

x=2, y=1, z=3, exp 1, output 1  

x=2, y=1, z=0, exp 0, output 0

Questions:

2a) What is the statement coverage of the test suite?

2b) What is the predicate coverage of the test suite?

Exercise 3: With one added test case?

int function(int x, int y, int z)

{

 if (x<y && x<z)

 return x;

 else if (y<x && y<z)

 return y;

 else

 return z;

}

Test suite:  

x=1, y=2, z=3, exp 1, output 1  

x=2, y=1, z=3, exp 1, output 1  

x=2, y=1, z=0, exp 0, output 0  

x=1, y=1, z=3, exp 1, output ?

Questions:

3a) What is the statement coverage of the test suite?

3b) What is the output value of the added test case?

03/12/14

40

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

03/12/14

41

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

Full coverage Proceed to negative
testing (or

integration)

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

Check which parts
of the code were

not covered.

Try to figure out

why specification-
based test cases

did not fully cover

the

implementation

Full coverage Proceed to negative
testing (or

integration)

Not full coverage

03/12/14

42

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

Check which parts
of the code were

not covered.

Try to figure out

why specification-
based test cases

did not fully cover

the

implementation

Augment the
specification with

missing

requirements

Full coverage Proceed to negative
testing (or

integration)

Not full coverage

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

Check which parts
of the code were

not covered.

Try to figure out

why specification-
based test cases

did not fully cover

the

implementation

Augment the
specification with

missing

requirements

Full coverage Proceed to negative
testing (or

integration)

Not full coverage

03/12/14

43

Combining Specification-Based with
Implementation-Based Test Design

Derive test cases
based on

specification

Execute test cases
and measure

coverage

Check which parts
of the code were

not covered.

Try to figure out

why specification-
based test cases

did not fully cover

the

implementation

Augment the
specification with

missing

requirements

Full coverage Proceed to negative
testing (or

integration)

Not full coverage

Applying Criteria in Practice

● Measuring coverage of the implementation requires
instrumentation of the source code

● For example, when measuring statement coverage it is

required that the statements exercised during testing are

monitored and kept track of

● This requires tool support

03/12/14

44

Applying Criteria in Practice (cont.)

● Measuring coverage of the implementation requires
instrumentation of the source code

● For example, when measuring statement coverage it is

required that the statements exercised during testing are

monitored and kept track of

● This requires tool support

Again note that different
coverage tools may

interpret and measure
criteria differently (even

though the names are
identical).

Feasibility

● Some coverage items may not be feasible

● Dead code

●  Incompatible boolean requirements

● It should be kept in mind that infeasibility of coverage

items is a fundamental part of testing,

●  I.e., not always possible to reach 100% coverage (of

any type)

●  It is recommended that coverage items not reached

during testing are identified and analysed

● However, in the general case, determining whether a

coverage item is feasible or not is undecidable

03/12/14

45

Test Case Generation for Structural
Testing

Typical Question: How do we select
x and y such that a > b?

In some cases, this can be resolved

manually. Often, it requires tool
support from constraint solvers. Other

times, no solution can be found.

Automated test case generation is a

highly active research field.

Additional problem: What is the

expected output?

int foo(int x, int y)

{

 ...

 if (a>b)

 {

 …

 }

 else

 {

 …

 }

}

Summary

● Structural Testing Fundamentals

● Adequacy Criteria and Coverage

● Graph-based Adequacy Criteria

● Logic-based Adequacy Criteria

● Important Considerations for

Structural Testing

