
2015-02-11

1

jUnit

jUnit

● www.junit.org (https://github.com/junit-team/junit/wiki) 

● “JUnit is a simple framework to write repeatable tests. It is an 
instance of the xUnit architecture for unit testing frameworks.” 

● Assertions

● Annotations

● Test Suites

● Test Execution Order

● Testing Exceptions

● assertThat() 

● Ignoring Tests

● Timeout for Tests

● Parameterized Tests

● Assumptions

● Rules 



2015-02-11

2

“Hello World” Test Case

Assertions

Assertion Description 

assertArrayEquals Asserts that two arrays are equal 

assertEquals Asserts that two objects are equal 

assertTrue Asserts that a condition is true 

assertFalse Asserts that a condition is false 

assertNull Asserts that an object is null 

assertNotNull Asserts that an object is not null 

assertSame Asserts that two objects refer to the same object 

assertNotSame Asserts that two objects do not refer to the same object 



2015-02-11

3

Annotations

● @Test

● @Before and @After

● @BeforeClass and @AfterClass

Test Suites

● Manually build a suite containing tests from many classes



2015-02-11

4

Test Execution Order

● Avoid writing tests which are dependent on other tests!

● But, if there is a needed to enforce order of test execution: 

● Again, try to find and eliminate dependency in your tests! 

Testing Exceptions (example 1)

● We need to have a test case which will pass when an 
exception is thrown, to verify this behaviour as well 

● There are three possibilities to do that

● 1. expected parameter



2015-02-11

5

Testing Exceptions (example 2)

● 2. try/catch combination

Testing Exceptions (example 3)

● 3. Using ExpectedException@Rule



2015-02-11

6

assertThat()

● Usage of Matchers from Hamcrest framework

assertThat() – Output result

assertThat(15, is(greaterThan(20)));

assertTrue(15>20); 



2015-02-11

7

Ignoring Tests 

● Simply remove @Test

● More appropriate way is the usage of @Ignore

Timeout for Tests

● Tests that run for ”too long” could be automatically 
declared as failed

● Two ways to achieve this:

● timeout parameter in @Test annotation for a particular test 

● Timeout @Rule (applies for every test in class!)



2015-02-11

8

Parameterized Tests

● Replacement for writing several tests where the only 
difference is in the input and expected values

Assumptions

● Possibility to run tests conditionally 

● Some resources may not be available on developer machine, 
but they are on the integration server


