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Combinatorial Testing (CT) can detect failures triggered by interactions of parameters in the Software
Under Test (SUT) with a covering array test suite generated by some sampling mechanisms. It has been an
active field of research in the last twenty years. This article aims to review previous work on CT, highlights
the evolution of CT, and identifies important issues, methods, and applications of CT, with the goal of
supporting and directing future practice and research in this area. First, we present the basic concepts and
notations of CT. Second, we classify the research on CT into the following categories: modeling for CT, test
suite generation, constraints, failure diagnosis, prioritization, metric, evaluation, testing procedure and the
application of CT. For each of the categories, we survey the motivation, key issues, solutions, and the current
state of research. Then, we review the contribution from different research groups, and present the growing
trend of CT research. Finally, we recommend directions for future CT research, including: (1) modeling for
CT, (2) improving the existing test suite generation algorithm, (3) improving analysis of testing result, (4)
exploring the application of CT to different levels of testing and additional types of systems, (5) conducting
more empirical studies to fully understand limitations and strengths of CT, and (6) combining CT with other
testing techniques.
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1. INTRODUCTION

The use of computers is entering into every corner of social life and is becoming the
important engine of economical and social progress. As the kernel of information tech-
nology, software has become a key issue affecting social and economic development.
To improve software quality, many software testing methods have been proposed and
studied. Different testing methods target different types of fault, and can be effective
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for certain testing scenarios. For example, mutation testing, which involves modifying
the source-code in a small way, can help the tester develop effective tests, identify
weaknesses in the test suite, or locate sections of the code that are seldom or never
accessed during execution [Offutt 1994]; metamorphic testing can solve the oracle prob-
lem in testing based on the property of Software Under Test (SUT) [Dong et al. 2007];
structural testing aims to find faults related to the internal structure of SUT [Marre
and Bertolino 2003]. In this article we focus on Combinatorial Testing (CT), also called
Combinatorial Interaction Testing (CIT). CT tests SUT with a covering array test suite
which tests all the required parameter value combinations. The advantage of CT is
that it can detect failures triggered by the interactions among parameters in SUT.

Suppose we want to test a network game software running in the Internet envi-
ronment. The operation of this game may be influenced by many parameters, such as
browser, operating system, the type of network access, graphics, audio, the number of
players, and so on. Each of these parameters may take on many possible values. The
interactions of these parameters may cause some failures. Due to the large combination
space, exhaustive testing by testing all the parameter value combinations is generally
impractical. Even if we have the resources to try all value combinations, this is not
effective because most of the value combinations do not cause any failure. CT provides
a practical way to detect failures caused by parameter interactions with a good trade-
off between cost and efficiency. It samples the large combination space using a smaller
test suite to cover certain key parameter value combinations.

As the software functions become more complex, and the running environments
become distributed, networked, and more complicated, modern software systems need
to be designed to be highly configurable so that they can run on and be optimized for a
wide variety of platforms and support various usage scenarios. With the adoption of new
software development technology, such as component-based software and the service-
oriented software, more and more software systems tend to have many parameters.
Interactions of these parameters may cause failures. As a result, software testing often
faces the problem of a large test combination space. These trends create a heavy demand
for more intelligent test data sampling mechanisms to detect interaction triggered
failures. CT offers such an effective testing technique which has been well studied and
widely used in the last 20 years.

Actually no single software testing technique can provide complete testing. Each type
of testing technique selects test cases using its own unique sampling approach, relying
on some knowledge of the system to select a subset of tests to execute [Salem et al. 2004].
For example, structural testing selects test cases guided by some structural coverage of
source-code. CT selects test cases with a sampling mechanism to systematically cover
parameter value combinations using a small test set which is relatively easy to manage
and execute. It can avoid the combination explosion problem of exhaustive testing.

CT has the following characteristics: (1) CT creates test cases by selecting values for
parameters and by combining these values to form a covering array. The covering array
specifies test data where each row of the array can be regarded as a set of parameter
values for a specific test. The collection of tests (represented by the rows of the array)
covers all τ -way combinations of parameter values, where τ specifies the number of
parameters in combination. An example is given in Figure 3, which shows a 2-way
covering array for 4 parameters with three values each. The interesting property of
this array is that any two columns contain all nine possible value combinations for two
specific parameters corresponding to the columns. For example, taking columns c1 and
c2, we can see that all nine possible 2-way combinations occur somewhere in the rows
of the two columns. In fact, this is true for any two columns. Collectively, this set of
tests will exercise all 2-way combinations of input values in only 9 tests, as compared
with 81 for exhaustive coverage. (2) CT uses a covering array as the test suite. The
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covering array aims to test as many parameter value combinations as possible in order
to detect failures triggered by parameter interactions. (3) Not every parameter of SUT
can trigger a fault, and some faults can be exposed by testing interactions among a
small number of parameters. Kuhn et al. studied the faults in several software projects,
and found that all the known faults are caused by interactions among 6 or fewer
parameters [Kuhn and Reilly 2002; Kuhn and Wallace 2004]. Based on this result, CT
can be very effective for certain types of applications, with performance approaching
that of exhaustive testing while using fewer test cases. (4) Being a specification-based
testing technique, CT requires no knowledge about the implementation of SUT. Also,
the specification required by CT is “lightweight,” since we only need to know the basic
system configuration to identify the input parameters and their possible values. (5)
Test generation for CT can be automated, which is a key to gaining a wide industrial
acceptance.

In software testing, there is no guideline that dictates the best course of testing, and
there are no “best practices” that can always guarantee success [Bach and Schroeder
2004]. Although CT is useful in detecting certain faults, it can create a false confidence
because: (1) CT may be viewed as providing a kind of shortcut of software testing. It
has its own pitfalls, such as not testing all possible parameter combinations. (2) If the
parameters and their values are not selected properly, this will lower the defect detec-
tion capability of CT. (3) If we fail to identify all the interactions between parameters in
SUT, CT will not test those “missed” interactions. (4) If we do not have a “good enough”
oracle, the verification of testing results will be difficult. To ensure successful testing,
we should apply CT wisely. This requires professional skill and good judgement in its
application. The full strengths and weaknesses of CT need to be better understood.

In this article, we survey the state of the research of CT. In our study, we have
collected over 90 key papers related to CT. We classify these papers into eight categories.

(1) Modeling (Model): Studies on identifying the parameters, values, and the interre-
lations of parameters of SUT.

(2) Test case generation (Gen): Studies on generating a small test suite effectively.
(3) Constraints (Constr.): Studies on avoiding invalid test cases in the test suite gen-

eration.
(4) Failure characterization and diagnosis (Fault): Studies on fixing the detected faults.
(5) Improvement of testing procedures and the application of CT (App.): Studies on

practical testing procedure for CT and reporting the results of the CT application.
(6) Prioritization of test cases (Prior.): Studies on the order of test execution to detect

faults as early as possible in the most economical way.
(7) Metric (Metric): Studies on measuring the combination coverage of CT and the

effectiveness of fault detection.
(8) Evaluation (Eval.): Studies on the degree to which CT contributes to the improve-

ment of software quality.

Note that most of categories are nonexclusive; that is, a paper may focus on modeling
of CT and also on evaluation. We assign each paper to one category based on the main
objective of the paper. Thus, our classification is subjective and some papers may be
classified into another category by other researchers. Nevertheless, we believe that on
the whole, the distribution shown in Figure 1 represents a fairly good picture of the
current state of research in CT.

The remaining part of this article is organized as follows: Section 2 presents the
commonly used terms of CT. Section 3 discusses the eight categories of research, and
reviews the contributions from various research groups and the growing trend of CT.
In the last section, we make recommendations on the future direction of research
in CT.
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Fig. 1. Distribution of CT research areas.

Fig. 2. Configuration parameters for NGS.

2. BACKGROUND

In this section, we give an overview of CT, including some formal notations and defi-
nitions commonly used in the literature. From the successive definitions of test suites
for CT, we can understand the evolution of CT. We also review the test case generation
methods for CT.

2.1. Notations

We assume the Software Under Test (SUT) has n parameters ci(i = 1, 2 · · · n), which
may represent configuration parameters, internal or external events, user inputs, etc.,
and these parameters or their interactions may influence the SUT. Let ci have ai
discrete values from the finite set Vi, ai = |Vi|. Assume all the parameters are indepen-
dent, that is, none of the parameter values is determined by the others. Without loss
of generality, we assume a1 ≥ a2 ≥ · · · ≥ an.

Let R be the set of interaction relations which records all the interactions existing
among parameters. This information can be obtained from various development doc-
uments of the SUT or from interviews with related domain experts. R ⊆ 2C , where
C = {c1, c2, . . . , cn}. For example, given R = {{c1}, {c1, c2}, {c2, c3}, {c3, c4, c5}, {c4, c5}}.
{c1} ∈ R shows that all the values of parameter c1 in V1 can affect the SUT and may
trigger a software failure. {c1, c2} ∈ R shows that there exist interactions between c1
and c2, that is, all the pairs in V1 × V2 may trigger a software failure. {c3, c4, c5} ∈ R
shows that there exist interactions among c3, c4, and c5, and all the combinations in
V3 × V4 × V5 may affect the SUT. R can be viewed as the covering requirements for CT,
specifying which combinations should be covered in testing.

To present the key concepts of CT, we will make use of the following running example.
Example. Consider a Network Game Software (NGS) which may be influenced

by the configuration parameters as shown in Figure 2. In our example, n = 4, a1
= a2 = a3 = a4 = 3, V1 = {Netscape, IE, Fire fox}, V2 = {Windows, Linux, Macintosh},
V3 = {ISDL, Modem, V PN}, and V4 = {Creative, Digital, Maya}. R = 2C/∅ =
{{c1, c2, c3, c4}}, where C = {c1, c2, c3, c4}, that is, here all the parameters and their
combinations may affect the NGS.
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Fig. 3. Test suite generated for pairwise testing (2-way testing).

Definition 2.1.1 (Test Case). n−tuple (v1, v2, . . . , vn) where (v1 ∈ V1, v2 ∈ V2, . . . , vn ∈
Vn) is a test case t or a test configuration of the SUT. Let Tall denote the set of all
possible test cases for the SUT, that is, Tall ⊆ {(v1, v2, . . . , vn)|(v1 ∈ V1, v2 ∈ V2, . . . , vn ∈
Vn)} = V1 × V2 × . . . × Vn.

For any given SUT, there exists a Tall which is determined by the system parameters,
their values and interactions, and some other constraints. For example, a test case t for
the NGS is the 4−tuple (Netscape, Windows, ISDL, Creative). NGS has a maximum of
34 = 81 test cases based on all possible parameter value combinations.

Obviously, Tall is generally too large to be completely executed in testing, and in fact
it is not necessary to run all tests in Tall. In this article Tc will denote the test suite
generated for CT, and obviously Tc ⊆ Tall.

The interaction between parameters is in fact the effect caused by the combination
of the parameter values. When specific values of these parameters are used together,
they may trigger a software failure. A combination of parameter values can be viewed
as a value schema.

Definition 2.1.2 (Value Schema). For the SUT, the n−tuple (−, vn1 , . . . , vnk, . . .) is
called a k − value schema (k > 0) when some k parameters have fixed values and
the others can take on their respective allowable values, represented as " − ". When
k = n, the n−tuple becomes a test case for the SUT as it takes on specific values for
each of its parameters [Shi et al. 2005].

CT is good at detecting failures triggered by some interaction among parameters,
which can be represented by a combination of some k parameter values or a k−value
schema. We can say that it is some k−value schema of the SUT that causes the software
failure.

For example, if a defect is revealed when we test the NGS with the test case
t = (Netscape, Windows, ISDL, Creative), it may be triggered by one of the parameter
values, that is, any one of 1-value schemas in {(Netscape,−,−,−), (−, Windows,−,−),
(−,−, ISDL,−), (−,−,−, Creative)}; or by the interaction of some two parameters, that
is, any one of 2−value schemas in {(Netscape, Windows,−,−), (−, Windows, ISDL,−),
(−,−, ISDL, Creative), (Netscape,−, ISDL,−), (−, Windows,−, Creative), (Netscape,
−,−, Creative)}; or by the interaction of some three parameters, that is, any one of
3−value schemas in {(−, Windows, ISDL, Creative), (Netscape, −, ISDL, Creative),
(Netscape, Windows, −, Creative), (Netscape, Windows, ISDL,−)}; or by the four
specific parameter values of t: (Netscape, Windows, ISDL, Creative). In this case, there
is a total of 24 − 1 = 15 possible causes.

Let t be a failed test case of SUT, all the k − value schema form a set Mt, Mt = {sk =
(−, vn1 , . . . , vnk, . . .)|sk is a k− value schema in t (k > 0)}. We have previously shown that
there is a total of 2n − 1 schema in this set [Shi et al. 2005].
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2.2. Definitions of Test Suite for CT

Next we give the definitions of orthogonal array, covering array, and variable strength
covering array, and also present the evolution of test suites for CT at the same time.

Definition 2.2.1 (Orthogonal Array). For SUT, a strength τ Orthogonal Array(OA)
(or a Mixed strength τ Orthogonal Array (MOA)), denoted as OA(N; τ, n, (a1, a2, . . . , an))
is an N × n array with the following properties.

(1) Each column i(1 ≤ i ≤ n) contains only elements from the set Vi with ai = |Vi|.
(2) The rows of each N × τ subarray cover all τ − tuples of values from the τ columns

exactly λ = N
ai1 ···aiτ

times.

The Orthogonal Array Number, OAN(N; τ, n, (a1, a2, . . . , an)), is the minimum N re-
quired to satisfy the parameter τ, n, (a1, a2, . . . , an). When a1 = a2 = · · · = an = v,
the orthogonal array is written as OA(N; τ, n, v), and its orthogonal array number as
OAN(N; τ, n, v) [Hartman 2002].

The orthogonal array requires each combination to be covered the same number of
times [Mandl 1985; Brownlie et al. 1992]. The most widely used orthogonal array is
the one with strength τ = 2. Figure 3 shows a strength 2 orthogonal array for the NGS.
There are nine rows in Figure 3, and each row represents a test case. Any two columns
of Figure 3 form 9 different pairs. Note that Figure 2 can also be viewed as a strength
1 orthogonal array for the NGS, with 3 test cases covering all the parameter values.

The earliest proposed CT method was OATS (Orthogonal Array Testing System)
which used an orthogonal array of strength 2 as the test suite. In general, the orthogonal
array was difficult to generate and its test suite was often quite large. But OA has its
advantages, such as making it relatively easy to identify the particular combination
that caused a failure. Soon τ -way testing became more popular, which uses a τ − way
covering array as the test suite. We next define the τ − way covering array.

Definition 2.2.2 (Covering Array). If an N × n array has the following properties:

(1) each column i(1 ≤ i ≤ n) contains only elements from the set Vi with ai = |Vi|;
(2) the rows of each N × τ subarray cover all τ − tuples of values from the τ columns

at least once, then

it is called a τ − way covering array (or a Mixed strength τ Covering Array (MCA)),
denoted as CA (N; τ, n, (a1, a2, . . . , an)). The covering array number, CAN (N; τ, n,
(a1, a2, . . . , an)), is the minimum N required to satisfy the parameter τ , n, and
(a1, a2, . . . , an). When a1 = a2 = . . . = an = v, the covering array is written as
CA (N; τ, n, v), and its covering array number as CAN (N; τ, n, v) [Cohen et al. 2003a;
2007b].

Testing with a test suite of τ−way covering array is called τ−way testing. τ -way
testing is a kind of CT which requires that every combination of any τ parameter
values in the software must be tested at least once. When τ = 1, it is called the Each
Choice (EC) combination strategy. It becomes Pairwise Testing (PW) when τ = 2. When
τ = n, it is called the All Combination (AC) strategy. From Definitions 2.2.1 and 2.2.2,
we can see that an orthogonal array with strength τ is a τ -way covering array, but the
reverse is not necessarily true. Figure 3 can also be viewed as a 2-way covering array
for the NGS, and Figure 2 can be viewed as an 1-way covering array for the NGS.

A more practical and in some cases more flexible approach to examining interaction
coverage than τ -way testing is the variable strength interaction testing [Cohen 2004].
Its test suite is called a variable strength covering array. This method uses a covering
array that offers different covering strengths to different parameter groups and aims to
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Fig. 4. Relation of several forms of CT and DOE.

cover only combinations of parameters having mutual interactions. This is important
because interactions do not often exist uniformly between parameters. Some param-
eters will have strong interactions with each other while others may have few or no
interactions. For this reason, we may from time to time wish to focus testing on a specific
set of parameters and apply a higher strength testing on them without ignoring the rest.
In this case, the variable strength covering testing may be more effective and efficient.

Definition 2.2.3 (Variable Strength Covering Array). Let R denote the set of the in-
teraction relation set. R is the covering requirements for the SUT. Let C A be an m× n
matrix, with the elements of column i of C A from Vi, which is the value set of parameter
ci. If C A covers all the combinations required by R, we call C A a covering array for the
SUT. Every row of C A is a test case. When R has elements of different sizes, that is,
R = {{ci1 , ci2 , . . . , ciτ } | 1 ≤ i1 < i2 < · · · < iτ ≤ n, 1 ≤ τ ≤ n}, C A is called a Variable
strength Covering Array (VCA).

When R = {{ci1 , ci2 , . . . , ciτ } | 1 ≤ i1 < i2 < · · · < iτ ≤ n, τ is fixed} and |R| = Cτ
n, the

covering array C A for the SUT is a τ -way covering array as defined earlier.
Testing with a variable strength covering array is called variable strength interaction

testing. τ -way testing can be viewed as a special case of variable strength interaction
testing, and both of them as special cases of CT. Actually CT can be expanded to include
other important factors, such as constraints, and assigned test suite (seeds). CT can be
viewed as a kind of Design Of Experiment (DOE), which is a structured method that
is used to determine the relationship between the different factors affecting a process
and the output of that process [Salem et al. 2004]. The relationships between various
forms of CT are illustrated in Figure 4.

For prioritized combinatorial testing, [Turban 2006] defines a new type of covering
array, called �-biased covering array. An �-biased covering array is a covering array
CA (N; 2, k, v) in which the first � rows form tests whose total benefit is as large as
possible. That is, no CA (N′; 2, k, v) has � rows that provide a larger total benefit. For
instance, certain factors or levels for an input may have an associated benefit or priority
that indicates a higher preference that the interaction be covered earlier in testing.

2.3. Test Case Generation Methods

To detect failures triggered by interactions among parameters, CT uses different sam-
pling mechanisms to generate a test suite. There are several methods to generate a test
suite for CT. In this section, we first present One Factor One Time (OFOT), a simple
and common test case generation method, and its simplification. Then, we compare
several common test generation strategies.

Definition 2.3.1 (One Factor One Time Method). Let t = (v1, v2, . . . , vn) be an as-
signed test case of the SUT. Replace each parameter value vi with the other values
of the parameter ci one by one, keeping the other parameter values of test case t the
same. We can obtain

∑n
i=1 ai − n new test cases, and totally need

∑n
i=1 ai − n + 1 test
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Fig. 5. Test cases generated from OFOT.

Fig. 6. Test cost and coverage of different strategies.

cases including the assigned test case. This method of test generation is called One
Factor One Time, denoted as OFOT. It is also called the Base Choice(BC) combination
strategy [Mats et al. 2006a].

This method requires every value of every parameter be included in at least one
test case. For example, let t = (Netscape, Windows, ISDL, Creative) be a test case
for the NGS. We first replace the first parameter value "Netscape" by the other two-
values and generate two new test cases: t11 = (IE, Windows, ISDL, Creative), t12 =
(Fire f ox, Windows, ISDL, Creative). Then we replace the second parameter value. All
the test cases generated by OFOT are listed in Figure 5.

The one factor one time method can be simplified as follows.

Definition 2.3.2 (Simplified One Factor One Time Method). Let t = (v1, v2, . . . , vn)
be an assigned test case of the SUT. We change each value in t one by one, and generate
a test suite {tt

1 = (∗, v2, . . . , vn), tt
2 = (v1, ∗, . . . , vn), . . . , tt

n = (v1, v2, . . . , ∗)}, where * rep-
resents an allowable value that is different from the original value in t. This method is
called the Simplified One Factor One Time, denoted as SOFOT.

For example, let t = (Netscape, Windows, ISDL, Creative) be a test case for the
NGS. The test suite generated by SOFOT from t can be: Tst = {tt

1 = (IE, Windows,
ISDL, Creative), tt

2 = (Netscape, Linux, ISDL, Creative), tt
3 = (Netscape, Windows,

Modem, Creative), tt
4 = (Netscape, Windows, ISDL, Digital)}.

Test suites generated from OFOT and SOFOT can detect faults where a single
parameter value causes a software failure. They are unlikely to detect faults that are
triggered when two or more parameters simultaneously take certain values, because
they can not cover τ -value schema (for τ ≥ 2). Different test suites for CT have different
coverage and different costs.

In Figure 6, we compare the test cost and coverage of various testing strategies.
The second row gives the testing cost as measured by the size of the test suite. The size
of test suite for EC is Maxi(ai) because EC just needs to cover each parameter value
once. The size of test suite for BC is

∑n
i=1 ai − n + 1 because only one parameter value

in the test case is changed at a time. The size of test suite for PW is at least a1 × a2 or
∼ a1 × a2, because each test case can cover one combination of parameter c1 and c2 and
there are a1 ×a2 combinations. The size of test suite for OA is at least a1 ×a2 because it
needs to cover all the a1 ×a2 combinations of parameters c1 and c2 for the same number
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Fig. 7. The testing procedure for CT.

of times. We will approximate its size as ∼ a1 × a2. The size of test suite for τ -way is
∼ a1 · · · aτ because it needs to cover all the τ parameter value combinations, or the size
of τ -way test suite can be given by ∼ aτ

1 lg n for n parameters. Finally, the size of test
suite for AC is

∏
ai since it needs to test all possible combinations.

The third row of Figure 6 gives the coverage of a test suite T , Cov(T), which can be
measured by the number of k-value schema covered by T . Let Tcover={k-value schema
| k-value schema is covered by T }, Cov(T )=|Tcover|. From the definitions provided in
Section 2.2, we can see that the following relation holds.

Cov(EC) ≤ Cov(BC) ≤ Cov(PW) ≤ Cov(OA) ≤ Cov(τ − way) ≤ Cov(AC) (1)

The fourth row of Figure 6 gives the number of test cases required for the different
test strategies for our example NGS system. Eq. (1) holds for our running example of
NGS.

Manually generating the test suite for PW, OA, τ -way covering array(τ > 2), and
AC is often difficult. Fortunately, there are many free tools available. For example,
www.pairwise.org gives a list of test suite generation tools. Most of these free tools,
such as FireEye, are reasonably user friendly and can ease the burden in applying CT.

3. THE STATE OF CT RESEARCH

In this section, we present the research topics of CT one by one. For each topic, we
will discuss its motivation, key issues, solutions, the state of research, and some open
issues.

By adopting the work of others into the typical testing lifecycle, we propose a generic
procedure model of CT, as shown in Figure 7. The first step is to build a model of SUT
(Section 3.1), and the second step generates a test suite Tc for CT (Section 3.2) and
makes prioritization (Section 3.3). After the third step of test execution, if we find bugs
and can fix them, then we can conduct regression testing; else, if we cannot succeed
in the failure diagnosis, we can handle some further testing (Section 3.4). Finally, we
collect some data and evaluate the testing results (Section 3.5).

Our testing procedure model is very similar to the common process of testing. How-
ever, to address the unique characteristics of CT, some special activities and techniques
are added. We will discuss the application and the testing procedure of CT together
(Section 3.6).

Based on the generic model (Figure 7), we will discuss each step one by one. For the
sake of clarity, we will present constraints and test generation together in Section 3.2,
and metric and evaluation together in Section 3.5.

3.1. Model of SUT

Modeling of SUT is a very fundamental and important activity for CT, since the effec-
tiveness and efficiency of CT depend on the model used. It is the starting point of CT.
Different testers may come up with different models of SUT based on their own skill
and experience. A key issue in modeling is to build a precise model at the “right” level of
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abstraction. We first give the definition of model of SUT, then review some approaches
for modeling a SUT.

Definition 3.1.1 (SUT Model). For CT, a model of SUT includes four elements: pa-
rameters that may affect the SUT; values that should be selected for each parameter;
interaction relations that exist between parameters, and constraints that exist between
values of the different parameters, which can be used to exclude combinations that are
not meaningful from the domain semantics. A model for the SUT can be denoted as a
4-tuple: ModelSU T (P, V, R, C).

By Definition 3.1.1, four key issues need to be resolved in modeling of SUT:

(1) how to identify parameters that may affect the SUT;
(2) what values should be selected for each parameter;
(3) what interactions exist between parameters;
(4) what constraints exist between parameters and their values.

Only when these issues are settled can CT be effectively brought into play.
The first issue is to identify parameters for CT. Parameters in the SUT may represent

configuration parameters, like those of the NGS in Figure 2, and similar cases found in
Cohen et al. [1997], Williams [2000], and Xu et al. [2003b]. They may also represent user
input parameters [Schroeder 2002], features of the SUT [Cohen 2004], interfaces or
GUI [Williams and Probert 1996; Burr and Young 1998], and components or objectives
[Williams 2002]. By reviewing various system documents and conducting some case
studies [Mats et al. 2005], we can select an initial set of parameters for the SUT and
then refine this set by adding or deleting parameters during the modeling procedure.

The second issue is to determine the applicable values for each parameter. This step
is critical to the modeling of SUT, since the behavior of the SUT is governed by the
specific combination of parameter values. Note that some parameters may have many
values. For example, the parameter “Audio” in the NGS, a configure parameter, can
have many possible values, as there are hundreds of audio products in the market.
When the parameter is an input of continuous values, it can have an infinite number
of values. In this case, we must select some typical values. Equivalence partitioning,
boundary value analysis, and primary element selection are the usual methods to
be used here. Through selection of typical representative values from the equivalent
class, completing with some boundary values, and assigning some important or relevant
values for each parameter, we can keep the size of each Vi (1 ≤ i ≤ n) in the SUT small
(with just a few representative values).

The third issue is to identify the actual interactions between parameters. We can
study the system documents to identify: (1) parameters which will not interact with
any other parameters; (2) parameters which may have strong interactions with each
other; and (3) interactions which exist between a small number of parameters.

The fourth issue is to identify the constraints that exist between certain parameters.
A common case occurs when some specific values of one parameter conflict with some
values of another parameter. For example, the Browser parameter of the NGS cannot
take on “Firefox” value when the Access parameter has ‘ISDL” value. This represents
a kind of mutual exclusion constraint between parameters. The opposite case may also
occur when some specific value of one parameter must be combined with some value
of another parameters. For example, the Browser parameter of the NGS must take on
“IE” value when the Access parameter has “ISDL” value or when the Audio parameter
has “Maya” value.

To obtain the information on the interactions and constraints between parameters,
we can study the requirement document, design document, codes, and other related
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Fig. 8. Combinatorial strategies of test suite generation.

documents. We can also interview designers and programmers to extract the relevant
information. Static analysis, such as program slicing, can also be used to identify the
interactions between parameters [Schroeder and Korel 2000a, 2000b; Schroeder 2002;
Cheng et al. 2003].

With the information of interaction and constraints between parameters, we can
make CT more pertinent and effective. The output of modeling of SUT is (P, V, R, C):
a set P of parameters, P = {c1, c2, . . . , cn}; a set V of value sets, V = {V1, V2, . . . , Vn},
where each Vi is the value set for parameter ci(i = 1, 2, . . . , n); a set R of the inter-
action relations between parameters, and a set C of constraints which specifies the
requirements on what should or should not be covered.

Modeling of SUT provides the foundation for the following steps of CT. There have
been many studies on modeling of SUT which helped to advance this field. For example,
Dalal et al. [1998a, 1999] learned that iteration and expert knowledge is required to
build a proper model. Lott et al. [2005] gave the samples of modeling system which
can serve as a tutorial for applying CT. There have been some good guidelines for
modeling of SUT. Many applicable scenarios have been given in Williams [2002], and
the procedure for determining the parameters and their values, and generating test
suite is given in Krishnan et al. [2007]. Mats and Offutt [2007] presented a basic eight-
step process for input parameter modeling and gave some initial experience of using
this process. Czerwonka [2006] gave some practical ways of modeling that make the
pure pairwise testing approach more applicable.

Despite these prior works, there are still several open questions left in this area:

(1) how to effectively and efficiently model SUT for CT?
(2) how to validate the model?
(3) how to evaluate the effectiveness of the different approaches of modeling?

3.2. Combination Strategies and Tools for Test Suite Generation

A combination strategy selects test cases by combining values of the different test
object parameters based on some combinatorial strategy [Mats et al. 2005]. It involves
four elements: (1) covering array specifying the specific kind of test suite to be used; (2)
seeding to assign some specific test cases in advance; (3) constraints to be considered in
the test generation; and (4) method to be used to generate test cases. Next we introduce
these aspects.

3.2.1. Covering Array. There are many kinds of covering array we can select for CT.
Figure 6 shows that different covering arrays have different sizes and offer different
coverage. Based on the observation in testing that a larger test suite typically requires
more testing cost and a higher coverage typically increases the chance of detecting
failures, these covering arrays have different failure detection abilities and involve
different testing costs. In practice, some of them can be combined together; for example,
BC can be combined with OA or with PW by taking the union of the respective test
suites. Several studies investigated the effectiveness of these covering arrays. For
example, Mats et al. [2006a] evaluated five combination strategies: AC, EC, BC, OA,
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and PW. These strategies were evaluated with respect to the number of test cases, the
number of faults found, the failure size, and the number of decisions covered. Their
results indicated that the Each Choice strategy required the least number of tests
and found the smallest number of faults. This research provides some suggestion on
selecting an appropriate covering array.

3.2.2. Seeding. Seeding means to assign some specific test cases or some specific
schema in testing. Cohen et al. [1997] first used the term seeds to guarantee inclusion
of their favorite test cases by specifying them as seed tests or partial seed tests. The
seed tests are included in the generated test set without modification. The partial
seed tests are seed tests that have some input fields which have unassigned values.
The Automatic Efficient Test Generator (AETG) can complete the partial test cases by
filling in values for the missing fields.

Seeding has two practical applications [Czerwonka 2006]: (1) It allows explicit spec-
ification of important combinations. For example, if a tester is aware of combinations
that are likely to be used in the field, he can specify a test suite to contain these
combinations. All τ -way combinations in these seeds will be considered covered and
only incremental test cases which contain the uncovered τ -wise combinations will be
generated and added. (2) It can be used to minimize change in the test suite when the
test domain description is modified and a new test suite regenerated. For example, a
small modification of the test domain description, like adding parameters or parameter
values, might cause big changes in the resulting test suite. Containing these changes
can save testing cost.

Recently, Fouché et al. [2007] presented a new use of the seeding mechanism: in-
crement adaptive covering array, by building a series of covering arrays incrementally
and adaptively. Their approach begins with a seed of a low strength covering array,
and continually increases this as resources allow, and based on the revealed faults and
results of failure diagnosis. At each stage, the test cases from the previous stage are
reused as seeds. This allows failures owing to only one or two configuration settings to
be found and fixed as early as possible, and also reduces duplication of testing when
multiple covering arrays must be used. For example, we can first test SUT with EC,
then generate a PW test suite using the test suite from EC as seeds, and if it is neces-
sary, we can repeat the test generation using this PW test suite as seeds to form a new
higher strength covering array.

Many test generation tools of CT also support a seeding mechanism, such as AETG
[Cohen et al. 1997], PICT [Czerwonka 2006], and SST developed by us [Nie et al. 2006a].
These tools can first accept a predefined test suite, then generate additional test cases
to achieve the required coverage while minimizing redundant coverage of interactions.

3.2.3. Constraints. Constraints occur naturally in most systems. The typical situation
is that some combinations of parameter values are invalid. Existence of constraints
increase the difficulty in applying CT: (1) Most existing test generation methods cannot
deal with constraints, and ignore them. Ignoring constraints may lead to the generation
of test configurations that are invalid. This can lead to ineffective test planning and
wasted testing effort. (2) It is difficult to design a general algorithm for test generation
with due consideration of constraints. (3) Even a small number of constraints may
give rise to an enormous number of invalid configurations. When the generated test
suite contains many invalid test cases, this will cause a loss of combination coverage.
(4) Complicated constraints may exist in SUT, and multiple constraints can interact
to produce additional implicit constraints. It is both time consuming and highly error
prone to deal with constraints manually in test suite generation. Thus, proper handling
of constraints is a key issue we must address in test suite generation.
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Since Bryce and Colbourn first addressed “soft constraints” by weighting factors and
levels [Bryce and Colbourn 2006], there has been some work done by Hnich et al.
to address “hard constraints,” although they only provided examples of small inputs
and did not demonstrate that their method would scale [Hnich et al. 2006]. Although
handling constraints is still an open problem, there have been several good attempts
in dealing with constraints. For example, Cohen et al. [2007b, 2007a, 2008] studied the
magnitude and subtlety of constraints found in configurable systems and presented
techniques for handling them. They described the variety and type of constraints that
can arise in highly configurable systems and reported on the constraints found in two
nontrivial software systems. They presented a technique for compiling constraints into
a boolean satisfiability (SAT) problem and integrating constraint checking with both
greedy and simulated annealing algorithms for interaction test generation.

Mats et al. [2006b] investigated four different constraint handling methods: the
abstract parameter method and the submodels method that can result in conflict-free
parameter models, the avoid method which ensures that only conflict-free test cases are
selected during the test case selection process, and the replace method which removes
conflicts from already selected test cases. They also provided a good guideline on when
to use these four constraint handling methods.

3.2.4. Test Case Generation Technique. Test case generation is the most active area of
CT research. In our survey, we have identified 50 related papers on test generation. We
also included a few studies on covering array published in mathematical journals. As
the problem of covering array generation is NP-hard, researchers have tried various
methods to solve it. To date, four main groups of methods have been proposed: greedy
algorithm, heuristic search algorithm, mathematic method, and random method. The
first two groups are computational approaches.

Greedy algorithms have been the most widely used method for test suite generation
for CT. They construct a set of tests such that each test covers as many uncovered
combinations as possible. There are two classes of greedy algorithms. The first class
is the one-row-at-a-time variation based on the automatic test case generator AETG
[Cohen et al. 1997]. Bryce et al. [2005] presented a generic framework for this class of
algorithms. A single row of the array is constructed at each step until all τ -sets have
been covered. Algorithms that fit into this class include: the heuristic algorithm used
to generate pairwise test suite of the CATS tool [Sherwood 1994], the density-based
greedy algorithm for generating a 2-way and higher strength covering array [Bryce
and Colbourn 2007a, 2008], and the greedy algorithm with different heuristics used in
PICT [Czerwonka 2006]. Tung and Aldiwan [2000] also gave a greedy algorithm for a
parametric test case generation tool that applies a combinatorial design approach to
the selection of candidate test cases. A typical greedy algorithm works as follows.

Greedy Algorithm

Let US be the set of all the τ -way combinations that should be covered according
to the model of SUT (P,V,R,C).
Let Seeds be the set of test cases assigned by testers. Remove all the τ -way
combinations covered by the test cases in Seeds from US.
While (US 
= ∅)

Generate a test case t to cover the most uncovered τ -way combinations.
Check the constraints and ensure it is valid.
Remove all the the τ -way combinations covered by the test cases t from US.

End while.
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The second class of greedy algorithm is the In Parameter Order (IPO) algorithm.
This class of algorithm begins by generating all τ -sets for the first τ factors and then
incrementally expands the solution, both horizontally and vertically using heuristics
until the array is complete. Lei and Tai [2001], Tai and Lei [2002], and Lei et al. [2007b,
2008] described an algorithm for generating 2-way and τ -way covering array. We gave
a greedy algorithm based on solution space tree to generate 2-way array [Nie et al.
2006a] and extended the existing greedy algorithms for VCA [Nie et al. 2005, 2006b;
Wang et al. 2007, 2008].

Heuristic search techniques such as hill climbing, great flood, tabu search, and sim-
ulated annealing have been applied to τ -way covering array and VCA generation. Also
some AI-based search techniques such as Genetic Algorithm (GA) and Ant Colony
Algorithm(ACA) have also been used. Heuristic search techniques start from a preex-
isting test set and then apply a series of transformations to the test set until it covers
all the combinations. Ghazi [2003] used a GA-based technique that identifies a set of
test configurations that are expected to maximize pairwise coverage with a predefined
number of test cases. Bryce and Colbourn [2007b] augmented the one-test-at-a-time
greedy algorithm with a heuristic search, which can generate tests that have a high
rate of τ -tuple coverage. This approach combines the speed of greedy methods with
the slower but more accurate heuristic search techniques. The hybrid approach seems
to achieve a more rapid convergence of τ -tuple coverage than either greedy or heuris-
tic search alone. They compared four heuristic search techniques and found that hill
climbing is effective only when time is severely constrained, but tabu search, simulated
annealing, and the great flood perform better over a longer time. Cohen et al. [2003a,
2003b, 2003c] reported using the computational method of simulated annealing to gen-
erate 3-way covering array and variable strength array. Shiba et al. [2004] also used
the genetic algorithm and ant colony algorithm to generate the 3-way covering array.
Heuristic search techniques can often produce a smaller test set than those from the
greedy algorithm, but typically require a longer computation. In the following we give
a generic search algorithm for covering array generation.

Search Algorithm

Let US be the set of all the τ -way combinations that should be covered according
to the model of SUT (P,V,R,C).
Let Seeds be the set of test cases assigned by testers. Remove all the τ -way
combinations covered by the test cases in Seeds from US.
For each test case t, fitness(t)=the number of τ -way combinations in US
covered by t, but uncovered by the generated test cases and Seeds
While (US 
= ∅)

Generate a set of test cases randomly;
Evolve the test set with a metaheuristic search method, such as simulated
annealing, hill climbing, great flood, tabu search, particle swarm optimization,
ant colony optimization, and genetic algorithm.

Output the valid t (satisfying the constraints) with the highest fitness score.
Remove all the τ -way combinations covered by the test cases t from US.

End while.

Mathematical methods for computing the covering array have been widely studied
in the mathematic community and they are often published in mathematical jour-
nals. The study of covering array is an example of the interplay between pure math-
ematics and the applied problems generated by computer science [Hartman 2002].
Some mathematical methods compute test sets directly based on a mathematical func-
tion. These approaches are generally extensions of the mathematical methods for
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Fig. 9. A recursive method for covering array generation of CT.

constructing orthogonal arrays. Some methods are based on recursive construction,
which builds larger test sets from smaller ones [Williams 2000; Kobayashi et al. 2002].
For example, in Figure 9(a), C A(m; 2, n, v) is an m×n matrix, representing a 2-way cov-
ering array. We can construct a larger C A(2m; 2, n2, v) by first concatenating n copies of
CA horizontally, then below each ith copy of CA, generate a new array formed by repeat-
ing the i column in CA n times. A concrete example is shown in Figure 9(b), where we use
C A(4; 2, 3, 2) to construct a larger C A(8; 2, 9, 2). More detail can be found in Williams
[2000]. But mathematical techniques (both direct and recursive) are not general. For
example, we cannot use mathematical techniques to built a good covering array for a
system with 10 parameters, each having six different values. Several test tools, such as
TConfig [Williams 2002], Combinatorial Test Services (CTS) [Hartman 2002], and Test-
Cover [Sherwood 1994] all use mathematical constructions to generate covering arrays.

Mathematical methods have two key advantages: (1) The computations involved are
typically “lightweight,” and they are immune to any combinatorial effect. (2) They
can be extremely fast and can produce optimal test sets in some special cases. But
they also have some disadvantages: (1) They often impose restrictions on the system
configurations to which they can be applied. For example, many approaches require that
the domain size be a prime number or power of a prime number. This significantly limits
their applicability. (2) They currently do not effectively deal with test prioritization and
constraint.

Compared to the mathematical methods, computational approaches offer the follow-
ing advantages: (1) They can be applied to an arbitrary system configuration, since
there is no restriction on the number of parameters and the number of values each pa-
rameter can take. (2) They can be easily adapted for test prioritization and constraint
handling. However, the computational approaches also have their own disadvantages:
(1) They involve explicitly enumerating all possible combinations to be covered. When
the number of combinations is large, explicit enumeration can be prohibitive in terms
of both the space for storing these combinations and the time needed to enumerate
them. (2) They are typically greedy, in the sense that they construct tests in a locally
optimized manner which does not necessarily lead to a globally optimized test set.
Thus, the generated test sets from computational approaches are often not minimal.

The fourth group of test generation method is the random method, an ad hoc approach
that randomly selects test cases from the complete set of test cases based on some input
distribution. It is often compared with the other methods to study the effectiveness of
test suite generation algorithm and the failure detection ability of the proposed methods
[Schroeder et al. 2004]. For some special cases, random search and search-based meth-
ods can do better than other methods. Techniques from the field of search-based soft-
ware engineering proposed by Harman can be applied to improve the test suite for CT
[Harman 2007]. Test suite generated by search techniques is often smaller in size and
better in constraint handling, as it integrates randomness and combination coverage.

Researchers have begun to combine different methods to efficiently generate a small
test suite. For example, Cohen et al. [2003b] combine the recursive combinatorial
constructions of mathematic methods with the simulated annealing of computational
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search methods. Their method leverages the computational efficiency and optimality of
size obtained through combinatorial constructions while benefiting from the generality
of a heuristic search. In theory, we can explore different combinations of the four main
classes of test generation methods. For example, we can combine mathematical method
with search method to generate a test suite, or combine heuristic greedy, random
method and mathematical method together. There are C2

4 +C3
4 +C4

4 = 11 combinations
that we can study.

There is still a lot of room to develop better methods for test generation for CT, and
especially if we can explore some special ways to resolve some specific testing scenarios.
Also, it is worthwhile to conduct a thorough study of various test generation methods
to fully understand their limitations and strengths under various testing scenarios.

3.2.5. Test Case Generation Tools. More than 20 software tools have been developed for
test case generation, for example, CATS (Constrained Array Test System) developed
by Sherwood et al. [2005], OATS (Orthogonal Array Test System) developed by Phadke
et al. [Brownlie et al. 1992], AETG developed by Cohen et al. [1997], IPO developed
by Lei and Tai [2001], Tconfig developed by Williams [2002], CTS (Combinatorial Test
Service) developed by IBM, and PICT developed by Microsoft [Czerwonka 2006]. We
have also developed the SST tool for test generation [Nie et al. 2006a]. Some new tools
are still continually appearing. Many of these tools are freeware. As each tool has its
own characteristics and advantages, none is the best for all settings. If possible we may
use them together, and then choose the best result. Some integrated tools have been
developed to generate a minimal test suite Tc.

Test generation involves mainly four factors and each factor has many cases, as
shown in Figure 8. For example, for covering array, we can use EC, BC, OA, PW, τ -way
covering array, or the combination of these test suites, and even the increment adaptive
covering array [Fouché et al. 2007]. The test generation method can be greedy, heuristic
search, mathematic, random, or some combination of these methods. In the process of
test generation we may or may not need to deal with constraints, and we may or may
not need to assign some seeds. From Figure 8, we can see that there are at least
5 × 2 × 2 × 5 = 100 scenarios. Therefore it is a big challenge to totally resolve the many
issues of test generation.

All existing tools have their own advantages and disadvantages. There is a need to
develop some more effective and more convenient tools for test generation. For example,
we can build a platform that integrates several tools together. Then, the best test set
can be selected depending on the specific testing requirements.

3.3. Test Case Prioritization

Test case prioritization has been well studied. The result of the prioritization is often
a schedule of test cases so that those with the highest priority, according to some
criterion, are executed earlier in testing. When testing is terminated after running
a subset of the prioritized test suite, those test cases deemed most important are
executed. Especially when the resource is limited, the important test cases should be
tested as early as possible. Well-ordered testing may reveal faults early because it
ensures that the important test cases are executed first. The test case prioritization
problem is defined as follows.

Definition 3.3.1. Given (T ,
∏

, f ), where T is a test suite,
∏

is the set of all test
suites obtained by permuting the tests of T, and f is a function from

∏
to real numbers,

the test case prioritization problem is to find π ∈ ∏
such that ∀π ′ ∈ ∏

, f (π ) ≥ f (π ′).
∏

gives the possible prioritization of T and f is the function to evaluate the prioritization
[Bryce and Memon 2007].
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Prioritization can be computed in two ways: (1) reorder an existing test suite of CT
based on a prioritization criteria; and (2) generate an ordered test suite for CT, taking
into account the importance of combinations.

By Definition 3.3.1, the key issues in test prioritization are how to define the func-
tion f , and validate the effectiveness of the prioritization. Bryce et al. [2005] and Bryce
and Colbourn [2006] adapted a one-test-at-a-time greedy method to take importance of
parameter pairs into account. With due consideration of seeding and constraint, they
used this method to generate a set of tests in order. Bryce and Memon [2007] explored
the effectiveness of the prioritization with interaction coverage in the event-driven
software. Compared with other criteria like ordering test by unique event coverage,
ordering test by the length, and random ordering, prioritization with interaction cov-
erage was found to provide the fastest rate of fault detection. Qu et al. [2007] tried
three code-coverage-based weighting methods and one specification-based method to
prioritize the test suite, and found that the prioritized CIT test suites may find faults
earlier than unordered CIT test suites, although the prioritized test suites sometimes
exhibit decreased fault detection.

Different prioritization methods have different performance. Better methods of test
case prioritization for CT may be developed by considering additional factors. For exam-
ple, we may do prioritization based on required execution time or based on incremental
τ -way coverage [Bryce and Memon 2007]. The prioritization done on GUI applications
was also applied to Web application [Sampath et al. 2008]. We also need more empirical
study to better understand the limitations and strengths of various proposed methods
[Li et al. 2007].

3.4. Failure Diagnosis

After detecting a failure, we need to investigate the failure to locate and then remove
the fault. Kuhn and Reilly [2002] and Kuhn and Wallace [2004] suggested that software
faults are often triggered by only a few interacting variables. Their results have impor-
tant implications for CT. If all faults in SUT are triggered by a combination of no more
than n parameters, then testing all n-way combinations of parameters can provide a
high confidence that nearly all faults have been discovered. So CT is an effective ap-
proach for detecting failures triggered by the combination of parameter values. When a
defect is exposed in CT, we should determine which specific combination of parameter
values causes the failure, or which value schema of SUT triggers the failure.

Failure diagnosis by finding failure-triggering schema is also called fault character-
ization. Fault characterization in CT can help developers quickly pinpoint the causes
of failures, hopefully leading to a quicker turn-around time for bug fixes. Automated
techniques, which can effectively, efficiently, and accurately perform fault character-
ization, can save a great deal of time and money. This is especially beneficial when
system configuration spaces are large, the software changes frequently, and resources
are limited. Yilmaz et al. [2006] applied CT and fed the testing results to a classification
tree algorithm to localize the observed faults. Their results suggested that sampling
via covering arrays can characterize option-related failures nearly as well as if we had
tested exhaustively, but at a much lower cost.

Shi et al. [2005] presented a further testing strategy for fault revealing and failure
diagnosis, which first tests SUT with a covering array, then reduces the value schemas
contained in the failed test case by eliminating those appearing in the passed test cases.
If the failure-causing schema is found in the reduced schema set, failure diagnosis is
completed with the identification of the specific input values which caused the failure;
otherwise, a further test suite based on SOFOT is developed for each failed test cases,
testing is repeated, and the schema set is then further reduced, until no more failure
is found or the fault has been located.
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For example, when we test NGS (Figure 2) with the test suite in Figure 3, if t1 =
(Netscape, Windows, ISDL, Creative) failed, and other test cases passed, we can gen-
erate M = Mt1 − ⋃

t is passed Mt, M has many schemas. If we cannot find the failure-
causing schema, we then design a further test suite Tt1 for t1 with SOFOT,
Tt1 = {(IE, Windows, ISDL, Creative) (Netscape, Linux, ISDL, Creative) (Netscape,
Windows, V PN, Creative) (Netscape, Windows, ISDL, Maya)}. After we execute Tt1
again, if only the second test failed, we compute M = Mt1 − ⋃

t is passed Mt again. Since
M may be greatly reduced, we can find the failure-causing schema in M more easily.
More detail can be found in Shi et al. [2005].

Colbourn [2006] and Colbourn and McClary [2008] extended the notion of a covering
array to detecting and locating arrays, which forms fault interaction test suites that
permit the location of a specified number of faults of specified strength.

Additional work is needed to develop better methods for failure diagnosis. There
is also a lack of empirical results on the various failure diagnosis methods. Another
fruitful area of study is to make use of the results from CT to localize the fault and fix
it, as valuable information about the fault can be gained from the failed test cases.

3.5. Metric and Evaluation

There exist two kinds of evaluation of CT: (1) measure and evaluate CT itself; and (2)
measure and evaluate the quality of the SUT after CT.

CT has a natural metric: combination coverage, which measures the percentage of
the covered parameter value combinations relative to the total combinations. One way
to measure the combination coverage is based on the k-value schemas tested relative
to the total k-value schemas.

Definition 3.5.1. Let Tc is a test suite of CT for SUT, and Tall is all the possible
test cases of SUT. MTc is a set of all the schema covered by Tc: MTc = {k-value schema
covered by Tc}, MSU T = {k-value schema covered by Tall} is all the possible schemas in
SUT. The combination coverage of test suite Tc is given by MTc

MSU T
.

This kind of CT metric can serve two purposes: (1) to set a test coverage target; and
(2) to evaluate different test strategies of CT which use different test suites. Williams
and Probert [2001] described the metric for CT and provide a formal definition of CT.
Schroeder et al. [2004] compared the failure detection effectiveness of τ -way CT and
random testing.

It is not easy to evaluate software quality after CT, as very few works have focused
on this topic. We only find one study by Salem [2001] and Salem et al. [2004], in which
they developed a logistic regression model of predicting software failure based on the
testing result of CT. More studies should be devoted to this area. We can try to enhance
existing methods of quality evaluation based on the characteristics of CT. To evolve
and obtain a reasonable evaluation method, more empirical evidences are needed.

3.6. The Application of CT and Testing Procedure

The second most popular topic of CT research is the study of applying CT to various
types of applications, and the refinement of testing procedures.

The basic concept of CT was first used in other disciplines many years ago. In 1926,
Fisher pioneered interaction tests in agricultural experiments, assessing the contri-
butions of different fertilizers to crop yield in the context of soil heterogeneity and
environmental factors such as erosion, sun coverage, rainfall, and pollen [Fisher 1926].
Given the limited resources for testing in most cases, exhaustive testing is not feasible.
Fisher applied interaction testing so that every pair of factors affecting the yield was
included exactly once. Since 1926, CT has been widely used in many other disciplines
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[Bryce et al. 2005], with many experiences and empirical studies reported on the testing
procedure and the application of CT.

For software testing, Mandl first proposed using pairwise combinatorial coverage to
test Ada compiler in 1985 and generated test sets using Orthogonal Latin Squares
[Mandl 1985]. Brownlie et al. reported a case study that tested PMX/StarMAIL system
using orthogonal array in 1992 and developed the OATS system to generate test cases
[Brownlie et al. 1992]. The generated test cases can detect many errors that had never
been detected previously.

There are two key questions on the application of CT: (1) Is there a standard proce-
dure we can follow in using CT? (2) What is the effectiveness of the CT procedure? The
big issues are how to develop a practical procedure for CT and how to evaluate it in
practice.

Many studies have been published in this area. Berling and Runeson [2003] used
CT for performance evaluation, and found that a small number of test cases give
information of which factors, or interactions between factors, affect the performance
measure. This knowledge can be used as a basis for future investigations, where, for
example, other environmental factors can be added and where factors which have no
effect can be removed. The information gained help to reduce the number of test cases
to be run in the real environment.

Krishnan et al. [2007] reported their experience in piloting and applying CT in
projects. They designed a supporting process for using CT, and shared details on ap-
plication of CT in feature testing of a mobile phone application. Their proposed testing
process emphasized the first step of modeling, included test prioritization, expected
output and failure diagnosis, but neglected the further testing and the evaluation
steps.

Many papers reported the experience of using CT in practice. Dunietz et al. [1997]
examined the correlation between τ -way coverage and achieved code coverage. Huller
[2000] used CT to test the ground system for satellite communications. Burroughs et al.
[1994] reported how both the quality and efficiency of protocol testing were improved
by CT, and Williams and Probert [1996] described a practical strategy for the pairwise
testing of network interface. These researches provided good guidelines for using CT.

CT has also been applied to other applications. White and Almezen [2000] proposed
a method which focused on user sequences of GUI objects and selections which collabo-
rate, called Complete Interaction Sequences (CIS), that produce a desired response for
the user. An empirical investigation of this method shows that a substantially reduced
test set can still detect the defects in the GUI. Future research will prioritize testing re-
lated to the CIS testing for maximum benefit if testing time is limited. Burr and Young
[1998] generated test cases to test an email system with AETG. We also explored the
configuration testing [Xu et al. 2003a] and the browser compatibility testing [Xu et al.
2003b] with CT. Lei et al. [2007a] described a CT strategy for concurrent programs.

From the many prior studies, it appears that CT can be applied to many types of
systems. However, each research team followed its own testing procedure. We believe
better testing results can be obtained by following a more effective testing procedure.
Some research effort should be devoted to this topic.

3.7. Summary

Since Mandl [1985] and Brownlie et al. [1992] first used orthogonal arrays to test
software, pairwise testing and then combinatorial testing were proposed and adopted.
There have been more than ten research groups working in the CT field. We summarize
the contribution of various research groups in Figure 10, with more detail given in the
Appendix.
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Fig. 10. Research group and their contribution to CT.

Fig. 11. Distribution of published work from 1985 to 2008.

Combinatorial testing is a subject that crosses both computer science and mathe-
matics. CT has attracted interest because we can combine mathematical methods and
computational methods from computer science to find solutions to the testing problem.
CT also presents many new and challenging problems.

Looking at Figure 10, we can conclude that test suite generation is the most active
area, and the application of CT is the second most studied area in CT. Most of the
research groups contributed in these two areas. As for the evolution of this research
field, from Figure 11 we can see that the research of CT begins to expand to include
modeling, metric, evaluation, failure diagnosis, constraint, and prioritization. But test
generation and the application continue to attract interest in recent years. We observe
a steep rise in the number of publications commencing from 2002, more than tripling
the average annual publications from the previous six years. Thus, the research of CT
is increasing, both in breadth and in depth, and CT has become a mature field where
the large-scale deployment of this technology is possible.

4. CONCLUSION AND FUTURE WORK

In the last 20 years, combinatorial testing has been widely studied and applied. Now,
it has become a well-accepted testing method, given its proven ability of detecting
interaction failures. Many topics have been studied over the years, such as modeling of
SUT, test suite generation, the application of CT, test prioritization, failure diagnosis,
metric, and evaluation.

In this article, we make four major contributions: (1) To our best knowledge, this is
the first complete and systematic survey for CT, as an independent software testing
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technique, although Mats et al. [2005] have given a survey on combinatorial testing
strategy, focusing mainly on test cases generation. We have made an careful survey on
over 90 key papers. (2) We classified all the work of CT into eight categories according
to the testing procedure. For each category, we surveyed the motivation, key issues,
solutions, and the current state of research. (3) We reviewed the contributions of the
different research groups, and presented the growing trend of CT research. (4) Based
on our study and other knowledge, we recommend the following areas of focus in CT
research in the future.

(1) A good model of the test parameters is critical to CT. We need effective ways
to identify the parameters of SUT, determine the values of each parameter, and
explore the interactions and constraints existing among the parameters. To be
effective in detecting defects, not only do we need a good understanding of the
limitations and strengths of CT, but also a good model of SUT that includes all
relevant parameters, their values, interactions, and constraints.

(2) Although many methods have been proposed to generate test suite for CT, as
the problem of test suite generation is NP-hard, there is room for further im-
provement of these test generation methods. In particular, a good method should
support the use of seeding and make full use of constraints in generating a set
of feasible test cases. Various mathematical methods, computational methods,
and their crossover combinations can play an important role in improving test
generation.

(3) As there exist failures which are caused by the interaction of more than 2 factors
in SUT, and for certain critical SUT, we may want to test more combinations to
ensure its quality. Thus there is a need for the test suite generation algorithms
for τ -way(τ > 2). Although the IPOG, density algorithm, simulated annealing,
and some mathematical techniques have been used to generate τ -way covering
array(usually τ = 3), there has been relative little work on τ -way compared to
2-way, and more work is needed in this area.

(4) To realize the full potential of CT, better strategies and methods need to be devel-
oped to make use of the testing result from CT to support further testing, failure
diagnosis, and evaluation.

(5) As CT generally requires a large number of tests, it is impractical to conduct manual
testing and results analysis. Tools are needed to support the many testing steps.
More work is needed in integrating the test generation tools with other tools to
automate the entire testing process of CT.

(6) Another fruitful area of research in CT is to expand it to different levels of testing.
For example, we can explore the application of CT in unit testing, integration
testing, and system testing. We can also investigate how to apply CT to different
types of software, such as object-oriented software, service-oriented software, etc.

(7) There is a lack of empirical results in CT. We need to conduct more studies and
collect more evidence to fully understand the limitations and strengths of CT. For
example, there is still no empirical study on the effect of the prioritization by
interaction coverage.

(8) One approach to overcome the weakness of CT is to combine this technique with
other testing techniques. We can try to incorporate the concept of CT into other
testing techniques or to expand CT by including other testing techniques. For
example, we may combine CT with test case prioritization to ensure the most
important test cases are executed early; we can also combine CT with metamorphic
testing to solve the oracle problem of CT by automating the process to determine
whether a test passes or fails.
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APPENDIX: THE CONTRIBUTIONS FROM DIFFERENT RESEARCH GROUPS

A.1. Bryce et al.

Bryce et al. made many contributions on test generation, failure diagnosis, and pri-
oritization. Sherwood first introduced the CATS tool, which implemented a heuristic
algorithm for pairwise coverage [Sherwood 1994]. This group discussed two algebraic
approaches to generate covering array, which could be used to build mixed covering
array of strength 2 and covering array of higher strength [Colbourn et al. 2005; Bryce
and Colbourn 2005; Sherwood et al. 2005; Bryce et al. 2005], and introduced sev-
eral greedy algorithms to construct covering arrays, mixed-level covering arrays, and
�-biased covering arrays [Turban 2006].

Colbourn later proposed the failure locate and detect array [Colbourn 2006; Colbourn
and McClary 2008]. Bryce and Colbourn proposed a deterministic density algorithm
to generate a test set for pairwise testing and a higher strength covering array [Bryce
and Colbourn 2007a, 2008]. They then defined the problem of test suite prioritization,
proposed solutions both generating prioritized test suites from scratch and prioritizing
existing test suites by combinatorial coverage for GUI and Web applications, and con-
ducted an empirical study on prioritized CT with seeding and constraints [Bryce 2005;
Bryce and Colbourn 2006].

A.2. Cohen D. M., Dalal et al. and AETG from Bellcore

The group from Bellcore has worked in modeling, test generation, and the application
of CT. They presented the first use of test generation system called AETG to gener-
ate a test suite of CT for various application scenarios in 1990’s [Cohen et al. 1994,
1996, 1997; Cohen and Fredman 1998] and concluded that AETG was an effective and
efficient way to create test case [Burroughs et al. 1994].

Cohen et al. showed that the number of tests required to cover n-way parameter
combinations grows logarithmically with the number of parameters, and showed that
AETG was able to reduce the number of test cases compared to OA. They used AETG
to generate both a high-level test plan and detailed test cases by incorporating some
constraints and seeds. Other studies also found that the AETG pairwise test sets gave
good coverage in a variety of settings [Burr and Young 1998].

Dalal et al. later presented the method of factor covering design for testing, and
offered some testing guidelines based on their experience. They also proposed some
models and some measures of effectiveness [Dalal and Mallows 1998], and reported
four case studies in which their model-based test architecture has been used. The main
lessons learned were that the model of the test data was fundamentally important,
and considerable domain expertise and iteration were often required to find a suitable
model [Dalal et al. 1998a, 1999]. After providing a publicly available Web interface to
AETG [Dalal et al. 1998b], to serve as a tutorial for CT, they recently presented example
system requirements and the corresponding methods for applying the combinatorial
approach to those requirements [Lott et al. 2005].

A.3. Cohen M. B. et al.

Cohen et al. worked on many areas of CT, including test generation, application, test
prioritization, failure diagnosis, constraints, and evaluation. They first examined the
need of variable strength covering array and proposed this new subject of research,
then they presented some computational methods, such as simulated annealing, to
find variable strength array [Cohen et al. 2003c; 2003a]. They also explored a method
for building covering array of strength three that combined algebraic constructions
with computational search. This method leverages the computational efficiency and
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optimality of size obtained through algebraic constructions while benefiting from the
generality of a heuristic search [Cohen et al. 2003b; Cohen 2004].

They later tried to quantify the effects of different configurations on a test suite’s
operation and effectiveness [Cohen et al. 2006]. They used covering array to detect
option-related defects and gave fault characterization in complex configuration spaces
using the classification tree analysis [Yilmaz et al. 2006]. They also examined the
effectiveness of CT on regression testing in evolving programs with multiple versions
as well as studied several prioritization techniques [Qu et al. 2007], presented a general
constraint representation and a technique based on the existing constraint handling
techniques [Cohen et al. 2007b; Fouché et al. 2007; Cohen et al. 2008]. Recently they
presented an incremental and adaptive approach to building covering array schedules
[Cohen et al. 2007a].

A.4. Grindal et al.

Grindal et al. studied modeling of SUT, test generation, application, constraints solv-
ing, and evaluation. They surveyed 15 different combination strategies extracted from
more than 30 related papers, reviewed almost all of the published papers in this field
before 2004, and gave a subsumption hierarchy to relate the various coverage criteria
associated with the identified combination strategies [Mats et al. 2005]. They presented
four different methods for handling constraints in parameter models when using com-
bination strategies to select test cases, and compared them to three existing methods
[Mats et al. 2006b]. They also presented results from a comparative evaluation of five
combination strategies, and evaluated them with respect to the number of test cases,
the number of faults found, failure size, and the number of decisions covered [Mats et al.
2006a]. Recently, they presented an eight-step structured method for the creation of
input parameter models custom-designed for combination strategies [Mats and Offutt
2007].

A.5. Hartman et al.

Hartman defined the general problems of covering array and gave a series of construc-
tion methods for covering array, and later defined several problems motivated by the
application of CT and discussed their solutions [Hartman 2002; Hartman and Raskin
2004]. Hartman et al. later implemented their algorithm and offered their IBM Witch
tool free of charge. It used to be called CTS in an earlier version.

A.6. Kobayashi et al.

Kobayashi et al. studied design and evaluation of automatic test generation strategies
for functional testing with CT [Kobayashi 2002]. They proposed an algebraic method
to generate pairwise test set [Kobayashi et al. 2002], and they later [Shiba et al. 2004]
used artificial life techniques such as generic algorithm and ant colony algorithm to
generate test cases for CT.

A.7. Kuhn et al.

Kuhn et al. studied the effectiveness of CT in a variety of application domains. Their
research showed that about 20%–70% of software faults were triggered by single pa-
rameters, about 50%–95% of faults were triggered by two or fewer parameters, and
about 15% were triggered by three or more parameters. Thus, CT, especially pairwise
testing, is very effective in practice. Later they studied the fault interactions of large
distributed systems, and discovered that the failure-triggering interactions of this kind
of systems are mostly 4 to 6 [Kuhn and Reilly 2002; Kuhn and Wallace 2004]. Their
work shows that CT can be as effective as exhaustive testing in some cases, if all
failures can be triggered by an interaction of 6 or fewer parameter values.
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A.8. Lei et al.

Lei et al. proved that the problem of generating a minimum test set for pairwise
testing is NP-complete, proposed the IPO test generation strategy for pairwise testing
by extending parameters [Lei and Tai 2001; Tai and Lei 2002], then generalized the
strategy to τ -way testing and developed the FireEye tool to generate test set [Lei et al.
2007b, 2008]. They also presented an application that implements τ -way reachability
testing for concurrent programs, and evaluated its effectiveness with several case
studies [Lei et al. 2007a].

A.9. Nie et al.

In recent years, we have studied CT test case generation, failure diagnosis, and ap-
plications of CT. We proposed algorithms to generate test suite for pairwise testing
[Nie et al. 2006a], for τ -way testing [Nie et al. 2005], for neighbor factor combinatorial
testing [Nie et al. 2006b], for real interaction testing [Wang et al. 2007], and for vari-
able strength combinatorial testing [Wang et al. 2008]. We also developed a method
of failure diagnosis for CT [Shi et al. 2005] and applied CT to browser compatibility
testing [Xu et al. 2003b] and configuration testing [Xu et al. 2003a].

A.10. Salem et al.

Salem et al. proposed testing with DOE and predicted software quality based on logistic
regression [Salem 2001; Salem et al. 2004]. They utilized DOE to efficiently minimize
the number of test cases.

A.11. Schroeder et al.

Schroeder et al. worked on modeling, test generation, application, constraint, and eval-
uation. They proposed a CT test suite reducing approach using additional information
[Schroeder and Korel 2000a; Schroeder 2002; Cheng et al. 2003], and a new approach
to deal with the constraints in test generation [Schroeder and Korel 2000b]. They also
proposed a method to generate the expected output for CT [Schroeder et al. 2002], and
compared the fault detection effectiveness of N-way CT to random testing [Schroeder
et al. 2004]. Recently, they discussed the weaknesses of the pairwise testing and warned
testers against blindly accepting best practices [Bach and Schroeder 2004].

A.12. Williams et al.

Williams et al. contributed to the test suite generation, metric, and application of CT.
They presented a guide of CT application to test network elements of a telephony sys-
tem [Williams and Probert 1996], then explored the applicability of pairwise coverage
to configuration testing. They also studied how to apply CT to software component
testing, and identified eight contexts that CT can be applied, such as network compo-
nent interaction testing, Commercial Off-The-Shelf (COTS) components testing, and
Real-Time Object-Oriented Methodology (ROOM) substitutable components testing
[Williams 2000].

They later proposed a metric for CT and provided a formal definition of the system
test interaction problems [Williams and Probert 2001], and showed how the interaction
test coverage problem may be formulated as a 0-1 integer programming problem and
gave a minimal solution [Williams and Probert 2002]. Williams then proposed an
algebraic approach to generate pairwise test set [Williams 2002].

A.13. Others

Other researchers have also studied test suite generation and application of CT. Some of
them focused on test generation, for example, Ghazi [2003] used a GA-based technique
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to generate test suite for pairwise testing. Maity and Nayak [2005] presented a pairwise
test set generation strategy for parameters with different number of values. Tung and
Aldiwan [2000] proposed an algorithm to generate test suite using the combinatorial
design approach. Dumitrescu [2003] described an efficient algorithm for generating
tests that cover a prescribed set of combinations of parameters based on repeatedly
coloring the vertices of a graph. Denny and Gibbons [2000] reimplemented the block
design enumeration algorithm with a number of enhancements and demonstrated its
use with several case studies involving different kinds of incidence structures. Nurmela
[2004] used a tabu search heuristic to construct covering arrays and improved on
the previously known upper bounds of the sizes of optimal covering arrays. Recently
Yan and Zhang [2006] presented a SAT-based approach and a backtracking search
algorithm to generate a covering array.

Other researchers also reported their experience in the application of CT. For ex-
ample, Blass and Gurevich [2002] discussed the pairwise testing and its application.
Czerwonka [2006] focused on ways to make the pure pairwise testing approach more
practical and on features of tools that support pairwise testing in practise. Kahng and
Reda [2004] adapted and applied a number of CT algorithms to resolve the diagnosis
problem. Seroussi and Bshouty [1988] gave methods to generate the τ -way covering
array for logic circuits where each parameter has two values, and proved that the de-
sign of an optimal test suite for an arbitrary circuit is an NP-complete problem. Hnich
et al. [2005, 2006] developed constraint programming models of the problem of finding
an optimal covering array and exploited global constraints, multiple viewpoints, and
symmetry-breaking constraints. Huller [2000] also presented his experience with ap-
plying CT. White and Almezen [2000] generated a complete interaction sequence for
GUI testing.
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