
Module	  2:	  Reading	  assignment	  (INL4.4)	  
	  
This	  document	  provides	  the	  instructions	  for	  the	  Module	  2	  reading	  assignment	  
(INL4.4)	  in	  DVA434.	  	  
	  
Once	  you	  have	  completed	  the	  assignment	  in	  the	  form	  of	  a	  presentation,	  please	  
email	  to	  wasif.afzal@mdh.se.	  The	  deadline	  for	  submission	  is	  08-‐04-‐2015.	  	  
	  
Please	  note	  that	  you	  will	  be	  presenting	  this	  presentation	  as	  part	  of	  INL3	  (campus	  
day).	  
	  
Instructions:	  	  
	  

1. In	  this	  assignment,	  you	  will	  read	  three	  papers.	  These	  papers	  are	  as	  
following	  (These	  papers	  are	  attached	  below	  with	  these	  instructions):	  

a. L.	  Inozemtseva	  and	  R.	  Holmes.	  Coverage	  is	  not	  strongly	  correlated	  
with	  test	  suite	  effectiveness.	  In	  Proceedings	  of	  the	  36th	  
International	  Conference	  on	  Software	  Engineering	  (ICSE’14),	  2014.	  	  

b. C.	  Apa,	  O.	  Dieste,	  E.	  G.	  Espinosa	  G.	  and	  E.	  R.	  Fonseca	  C.	  	  Effectiveness	  
for	  detecting	  faults	  within	  and	  outside	  the	  scope	  of	  testing	  
techniques:	  an	  independent	  replication.	  Journal	  of	  Empirical	  
Software	  Engineering,	  Vol.	  19,	  No.	  2,	  2014.	  	  

c. J.	  Offutt	  and	  C.	  Alluri.	  An	  industrial	  study	  of	  applying	  input	  space	  
partitioning	  to	  test	  financial	  calculation	  engines.	  Journal	  of	  
Empirical	  Software	  Engineering,	  Vol.	  19,	  No.	  3,	  2014.	  	  

2. Please	  prepare	  a	  presentation	  (maximum	  of	  15	  slides)	  where	  you	  
summarize	  and	  reflect	  on	  these	  papers.	  Think	  about	  answering	  the	  
following	  aspects:	  

a. What	  are	  the	  goals/objectives/research	  questions	  addressed	  by	  
each	  paper?	  	  

b. Do	  you,	  being	  an	  industrial	  professional,	  agree	  with	  these	  
goals/objectives/research	  questions	  as	  being	  important	  to	  
investigate	  from	  a	  practical	  point	  of	  view?	  If	  yes,	  why	  and	  if	  no,	  
why	  not?	  

c. What	  is	  the	  research	  method	  used	  in	  these	  papers	  and	  do	  you	  
agree	  with	  how	  authors	  go	  about	  executing	  their	  study	  designs?	  
From	  an	  industrial	  perspective,	  do	  their	  study	  designs	  reflect	  what	  
typically	  happens	  in	  real	  world	  software	  testing?	  

d. Do	  you	  agree	  with	  how	  test	  effectiveness	  and	  efficiency	  is	  
measured	  in	  these	  papers?	  Do	  you	  see	  a	  possibility	  of	  using	  these	  
measures	  in	  your	  profession	  or	  if	  they	  would	  complement	  to	  those	  
already	  in	  practice?	  

e. What	  are	  the	  outcomes/results	  of	  these	  papers?	  Are	  you	  surprised	  
with	  the	  results?	  Can	  you	  criticize	  the	  results	  as	  not	  being	  
representative	  of	  what	  happens	  in	  real	  world	  software	  testing?	  	  
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ABSTRACT
The coverage of a test suite is often used as a proxy for
its ability to detect faults. However, previous studies that
investigated the correlation between code coverage and test
suite effectiveness have failed to reach a consensus about the
nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were
done with small or synthetic programs, making it unclear
whether their results generalize to larger programs, and some
of the studies did not account for the confounding influence
of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.

We have extended these studies by evaluating the relation-
ship between test suite size, coverage, and effectiveness for
large Java programs. Our study is the largest to date in the
literature: we generated 31,000 test suites for five systems
consisting of up to 724,000 lines of source code. We measured
the statement coverage, decision coverage, and modified con-
dition coverage of these suites and used mutation testing to
evaluate their fault detection effectiveness.
We found that there is a low to moderate correlation

between coverage and effectiveness when the number of test
cases in the suite is controlled for. In addition, we found that
stronger forms of coverage do not provide greater insight
into the effectiveness of the suite. Our results suggest that
coverage, while useful for identifying under-tested parts of a
program, should not be used as a quality target because it is
not a good indicator of test suite effectiveness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics—product metrics

General Terms
Measurement
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1. INTRODUCTION
Testing is an important part of producing high quality

software, but its effectiveness depends on the quality of the
test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29, 34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that
have found a relationship between code coverage and fault
detection effectiveness [3, 6, 14–17,24,31,39].

Unfortunately, these studies do not agree on the strength
of the relationship between these test suite characteristics.
In addition, three issues with the studies make it difficult to
generalize their results. First, some of the studies did not
control for the size of the suite. Since coverage is increased
by adding code to existing test cases or by adding new test
cases to the suite, the coverage of a test suite is correlated
with its size. It is therefore not clear that coverage is related
to effectiveness independently of the number of test cases in
the suite. Second, all but one of the studies used small or
synthetic programs, making it unclear that their results hold
for the large programs typical of industry. Third, many of the
studies only compared adequate suites; that is, suites that
fully satisfied a particular coverage criterion. Since adequate
test suites are rare in practice, the results of these studies
may not generalize to more realistic test suites.

This paper presents a new study of the relationship between
test suite size, coverage and effectiveness. We answer the
following research questions for large Java programs:

Research Question 1. Is the effectiveness of a test suite
correlated with the number of test cases in the suite?

Research Question 2. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is ignored?

Research Question 3. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is held constant?

The paper makes the following contributions:

• A comprehensive survey of previous studies that inves-
tigated the relationship between coverage and effective-
ness (Section 2 and accompanying online material).
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Table 1: Summary of the findings from previous studies.

Citation Languages Largest Program Coverage Types Findings

[15, 16] Pascal 78 SLOC All-use, decision All-use related to effectiveness independently of
size; decision is not; relationship is highly non-
linear

[17] Fortran
Pascal

78 SLOC All-use, mutation Effectiveness improves with coverage but not until
coverage reaches 80%; even then increase is small

[14] C 5,905 SLOC All-use, decision Effectiveness is correlated with both all-use and
decision coverage; increase is small until high levels
of coverage are reached

[39] C <2,310 SLOC Block Effectiveness is more highly correlated with block
coverage than with size

[24] C 512 SLOC All-use, decision Effectiveness is correlated with both all-use and de-
cision coverage; effectiveness increases more rapidly
at high levels of coverage

[6] C 4,512 SLOC Block, c-use,
decision, p-use

Effectiveness is moderately correlated with all four
coverage types; magnitude of the correlation de-
pends on the nature of the tests

[3] C 5,000 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types; effectiveness rises steadily with coverage

[31] C
C++

5,680 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types but the correlations are not always strong

[19,37] C
Java

72,490 SLOC AIMP, DBB,
decision, IMP,
PCC, statement

Effectiveness correlated with coverage; effective-
ness correlated with size for large projects

[5] C 4,000 SLOC Block, c-use,
decision, p-use

None of the four coverage types are related to
effectiveness independently of size

[20] Java O(100, 000)
SLOC

Block, decision,
path, statement

Effectiveness correlated with coverage across many
projects; influence of project size unclear

• Empirical evidence demonstrating that there is a low
to moderate correlation between coverage and effective-
ness when suite size is controlled for and that the type
of coverage used has little effect on the strength of the
relationship (Section 4).

• A discussion of the implications of these results for de-
velopers, researchers and standards bodies (Section 5).

2. RELATED WORK
Most of the previous studies that investigated the link

between test suite coverage and test suite effectiveness used
the following general procedure:

1. Created faulty versions of one or more programs by
manually seeding faults, reintroducing previously fixed
faults, or using a mutation tool.

2. Created a large number of test suites by selecting from
a pool of available test cases, either randomly or accord-
ing to some algorithm, until the suite reached either a
pre-specified size or a pre-specified coverage level.

3. Measured the coverage of each suite in one or more
ways, if suite size was fixed; measured the suite’s size
if its coverage was fixed.

4. Determined the effectiveness of each suite as the frac-
tion of faulty versions of the program that were detected
by the suite.

Table 1 summarizes twelve studies that considered the

relationship between the coverage and the effectiveness of
a test suite, ten of which used the general procedure just
described. Eight of them found that at least one type of cov-
erage has some correlation with effectiveness independently
of size; however, not all studies found a strong correlation,
and most found that the relationship was highly non-linear.
In addition, some found that the relationship only appeared
at very high levels of coverage. For brevity, the older stud-
ies from Table 1 are described more fully in accompanying
materials1. In the remainder of this section, we discuss the
three most recent studies.
At the time of writing, no other study considered any

subject program larger than 5,905 SLOC2. However, a recent
study by Gligoric et al. [19] and a subsequent master’s the-
sis [37] partially addressed this issue by studying two large
Java programs (JFreeChart and Joda Time) and two large C
programs (SQLITE and YAFFS2) in addition to a number
of small programs. The authors created test suites by sam-
pling from the pool of test cases for each program. For the
large programs, these test cases were manually written by
developers; for the small programs, these test cases were auto-
matically generated using various tools. Suites were created

1http://linozemtseva.com/research/2014/icse/
coverage/
2In this paper, source lines of code (SLOC) refers to exe-
cutable lines of code, while lines of code (LOC) includes
whitespace and comments.

436



in two ways. First, the authors specified a coverage level and
selected tests until it was met; next, the authors specified a
suite size and selected tests until it was met. They measured
a number of coverage types: statement coverage, decision
coverage, and more exotic measurements based on equivalent
classes of covered statements (dynamic basic block coverage),
program paths (intra-method and acyclic intra-method path
coverage), and predicate states (predicate complete cover-
age). They evaluated the effectiveness of each suite using
mutation testing. They found that the Kendall τ correla-
tion (see Section 4.2) between coverage and mutation score
ranged from 0.452 to 0.757 for the various coverage types
and suite types when the size of the suite was not considered.
When they tried to predict the mutation score using suite
size alone, they found high correlations (between 0.585 and
0.958) for the four large programs with manually written
test suites but fairly low correlations for the small programs
with artificially generated test suites. This suggests that the
correlation between coverage and effectiveness in real systems
is largely due to the correlation between coverage and size; it
also suggests that results from automatically generated and
manually generated suites do not generalize to each other.

A study by Gopinath et al. [20] accepted to the same con-
ference as the current paper did not use the aforementioned
general procedure. The authors instead measured coverage
and test suite effectiveness for a large number of open-source
Java programs and computed a correlation across all pro-
grams. Specifically, they measured statement, block, decision
and path coverage and used mutation testing to measure
effectiveness. The authors measured these values for approx-
imately 200 developer-generated test suites – the number
varies by measurement – then generated a suite for each
project with the Randoop tool [36] and repeated the mea-
surements. The authors found that coverage is correlated
with effectiveness across projects for all coverage types and
for both developer-generated and automatically-generated
suites, though the correlation was stronger for developer-
written suites. The authors found that including test suite
size in their regression model did not improve the results;
however, since coverage was already included in the model,
it is not clear whether this is an accurate finding or a result
of multicollinearity3.
As the above discussion shows, it is still not clear how

test suite size, coverage and effectiveness are related. Most
studies conclude that effectiveness is related to coverage, but
there is little agreement about the strength and nature of
the relationship.

3. METHODOLOGY
To answer our research questions, we followed the general

procedure outlined in Section 2. This required us to select:

1. A set of subject programs (Section 3.2);

2. A method of generating faulty versions of the programs
(Section 3.3);

3. A method of creating test suites (Section 3.4);

4. Coverage metrics (Section 3.5); and

5. An effectiveness metric (Section 3.6).

We then measured the coverage and effectiveness of the suites
to evaluate the relationship between these characteristics.

3The amount of variation ‘explained’ by a variable will be
less if it is correlated with a variable already included in the
model than it would be otherwise.

3.1 Terminology
Before describing the methodology in detail, we precisely

define three terms that will be used throughout the paper.

• Test case: one test in a suite of tests. A test case
executes as a unit; it is either executed or not executed.
In the JUnit testing framework, each method that starts
with the word test (JUnit 3) or that is annotated with
@Test (JUnit 4) is a test case. For this reason, we will
use the terms test method and test case interchangeably.

• Test suite: a collection of test cases.

• Master suite: the whole test suite that was written
by the developers of a subject program. For example,
the master suite for Apache POI contains 1,415 test
cases (test methods). The test suites that we create
and evaluate are strict subsets of the master suite.

3.2 Subject Programs
We selected five subjects from a variety of application

domains. The first, Apache POI [4], is an open source API
for manipulating Microsoft documents. The second, Closure
Compiler [7], is an open source JavaScript optimizing com-
piler. The third, HSQLDB [23], is an open source relational
database management system. The fourth, JFreeChart [25],
is an open source library for producing charts. The fifth,
Joda Time [26], is an open source replacement for the Java
Date and Time classes.
We used a number of criteria to select these projects.

First, to help ensure the novelty and generalizability of our
study, we required that the projects be reasonably large (on
the order of 100,000 SLOC), written in Java, and actively
developed. We also required that the projects have a fairly
large number of test methods (on the order of 1,000) so that
we would be able to generate reasonably sized random test
suites. Finally, we required that the projects use Ant as
a build system and JUnit as a test harness, allowing us to
automate data collection.

The salient characteristics of our programs are summarized
in Table 2. Program size was measured with SLOCCount [38].
Rows seven through ten provide information related to mu-
tation testing and will be explained in Section 3.3.

3.3 Generating Faulty Programs
We used the open source tool PIT [35] to generate faulty

versions of our programs. To describe PIT’s operation, we
must first give a brief description of mutation testing.
A mutant is a new version of a program that is created

by making a small syntactic change to the original program.
For example, a mutant could be created by modifying a
constant, negating a branch condition, or removing a method
call. The resulting mutant may produce the same output as
the original program, in which case it is called an equivalent
mutant. For example, if the equality test in the code snippet
in Figure 1 were changed to if (index >= 10), the new
program would be an equivalent mutant.

Mutation testing tools such as PIT generate a large number
of mutants and run the program’s test suite on each one.
If the test suite fails when it is run on a given mutant, we
say that the suite kills that mutant. A test suite’s mutant
coverage is then the fraction of non-equivalent mutants
that it kills. Equivalent mutants are excluded because they
cannot, by definition, be detected by a unit test.
If a mutant is not killed by a test suite, manual inspec-
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Table 2: Salient characteristics of our subject programs.

Property Apache POI Closure HSQLDB JFreeChart Joda Time

Total Java SLOC 283,845 724,089 178,018 125,659 80,462
Test SLOC 68,932 93,528 18,425 44,297 51,444
Number of test methods 1,415 7,947 628 1,764 3,857
Statement coverage (%) 67 76 27 54 91
Decision coverage (%) 60 77 17 45 82
MC coverage (%) 49 67 9 27 70

Number of mutants 27,565 30,779 50,302 29,699 9,552
Number of detected mutants 17,935 27,325 50,125 23,585 8,483
Number of equivalent mutants 9,630 3,454 177 6,114 1,069
Equivalent mutants (%) 35 11 0.4 21 11

int index = 0;

while (true) {

index++;

if (index == 10) {

break;

}

}

Figure 1: An example of how an equivalent mutant
can be generated. Changing the operator == to >=
will result in a mutant that cannot be detected by
an automated test case.

tion is required to determine if it is equivalent or if it was
simply missed by the suite4. This is a time-consuming and
error-prone process, so studies that compare subsets of a
test suite to the master suite often use a different approach:
they assume that any mutant that cannot be detected by
the master suite is equivalent. While this technique tends
to overestimate the number of equivalent mutants, it is com-
monly applied because it allows the study of much larger
programs.
Although the mutants generated by PIT simulate real

faults, it is not self-evident that a suite’s ability to kill mu-
tants is a valid measurement of its ability to detect real faults.
However, several previous and current studies support the
use of this measurement [2, 3, 10, 27]. Previous work has also
shown that if a test suite detects a large number of simple
faults, caused by a single incorrect line of source code, it
will detect a large number of harder, multi-line faults [28,32].
This implies that if a test suite can kill a large proportion of
mutants, it can also detect a large proportion of the more
difficult faults in the software. The literature thus suggests
that the mutant detection rate of a suite is a fairly good
measurement of its fault detection ability. We will return to
this issue in Sections 6 and 7.

We can now describe the remaining rows of Table 2. The
seventh row shows how many mutants PIT generated for each
project. The eighth row shows how many of those mutants
could be detected by the suite. The ninth row shows how
many of those mutants could not be detected by the entire
test suite and were therefore assumed to be equivalent (i.e.,
row 7 is the sum of rows 8 and 9). The last row gives the
equivalent mutants as a percentage of the total.

4Manual inspection is required because automatically deter-
mining whether a mutant is equivalent is undecidable [33].

3.4 Generating Test Suites
For each subject program, we used Java’s reflection API to

identify all of the test methods in the program’s master suite.
We then generated new test suites of fixed size by randomly
selecting a subset of these methods without replacement.
More concretely, we created a JUnit suite by repeatedly
using the TestSuite.addTest(Test t) method. Each suite
was created as a JUnit suite so that the necessary set-up and
tear-down code was run for each test method. Given this
procedure for creating suites, in this paper the size of our
random suites should always be understood as the number of
test methods they contain, i.e., the number of times addTest
was called.

We made 1,000 suites of each of the following sizes: 3
methods, 10 methods, 30 methods, 100 methods, and so on,
up to the largest number following this pattern that was less
than the total number of test methods. This resulted in a
total of 31,000 test suites across the five subject systems.
Comparing a large number of suites from the same project
allows us to control for size; it also allows us to apply our
results to the common research practice of comparing test
suites generated for the same subject program using different
test generation methodologies.

3.5 Measuring Coverage
We used the open source tool CodeCover [8] to measure

three types of coverage: statement, decision, and modified
condition coverage. Statement coverage refers to the fraction
of the executable statements in the program that are run
by the test suite. It is relatively easy to satisfy, easy to
understand and can be measured quickly, making it popular
with developers. However, it is one of the weaker forms of
coverage, since executing a line does not necessarily reveal
an error in that line.
Decision coverage refers to the fraction of decisions (i.e.,

branches) in the program that are executed by its test suite.
Decision coverage is somewhat harder to satisfy and measure
than statement coverage.
Modified condition coverage (MCC) is the most difficult

of these three to satisfy. For a test suite to be modified
condition adequate, i.e., to have 100% modified condition
coverage, the suite must include 2n test cases for every deci-
sion with n conditions5 in it [22]. This form of coverage is not
commonly used in practice; however, it is very similar to mod-

5A condition is a boolean expression that cannot be de-
composed into a simpler boolean expression. Decisions are
composed of conditions and one or more boolean operators.
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ified condition/decision coverage (MC/DC), which is widely
used in the avionics industry. Specifically, Federal Aviation
Administration standard DO-178B states that the most criti-
cal software in the aircraft must be tested with a suite that is
modified condition/decision coverage adequate [22]. MC/DC
is therefore one of the most stringent forms of coverage that
is widely and regularly used in practice. Measuring modified
condition coverage provides insight into whether stronger
coverage types such as MCC and MC/DC provide practical
benefits that outweigh the extra cost associated with writing
enough tests to satisfy them.
We did not measure any type of dataflow coverage, since

very few tools for Java can measure these types of coverage.
One exception is Coverlipse [9], which can measure all-use
coverage but can only be used as an Eclipse plugin. To the
best of our knowledge, there are no open source coverage tools
for Java that can measure other data flow coverage criteria
or that can be used from the command line. Since developers
use the tools they have, they are unlikely to use dataflow
coverage metrics. Using the measurements that developers
use, whether due to tool availability or legal requirements,
means that our results will more accurately reflect current
development practice. However, we plan to explore dataflow
coverage in future work to determine if developers would
benefit from using these coverage types instead.

3.6 Measuring Effectiveness
We used two effectiveness measurements in this study:

the raw effectiveness measurement and the normalized effec-
tiveness measurement. The raw kill score is the number of
mutants a test suite detected divided by the total number of
non-equivalent mutants that were generated for the subject
program under test. The normalized effectiveness measure-
ment is the number of mutants a test suite detected divided
by the number of non-equivalent mutants it covers. A test
suite covers a mutant if the mutant was made by altering a
line of code that is executed by the test suite, implying that
the test suite can potentially detect the mutant.

We included the normalized effectiveness measurement in
order to compare test suites on a more even footing. Suppose
we are comparing suite A, with 50% coverage, to suite B, with
60% coverage. Suite B will almost certainly have a higher
raw effectiveness measurement, since it covers more code and
will therefore almost certainly kill more mutants. However,
if suite A kills 80% of the mutants that it covers, while suite
B kills only 70% of the mutants that it covers, suite A is
in some sense a better suite. The normalized effectiveness
measurement captures this difference. Note that it is possible
for the normalized effectiveness measurement to drop when
a new test case is added to the suite if the test case covers a
lot of code but kills few mutants.

It may be helpful to think of the normalized effectiveness
measurement as a measure of depth: how thoroughly does the
test suite exercise the code that it runs? The raw effectiveness
measurement is a measure of breadth: how much code does
the suite exercise?
Note that the number of non-equivalent mutants covered

by a suite is the maximum number of mutants the suite could
possibly detect, so the normalized effectiveness measurement
ranges from 0 to 1. The raw effectiveness measurement,
in general, does not reach 1, since most suites kill a small
percentage of the non-equivalent mutants. However, note
that the full test suite has both a normalized effectiveness

measurement of 1 and a raw effectiveness measurement of
1, since we decided that any mutants it did not kill are
equivalent.

4. RESULTS
In this section, we quantitatively answer the three research

questions posed in Section 1. As Section 3 explained, we
collected the data to answer these questions by generating
test suites of fixed size via random sampling; measuring their
statement, decision and MCC coverage with CodeCover; and
measuring their effectiveness with the mutation testing tool
PIT.

4.1 Is Size Correlated With Effectiveness?
Research Question 1 asked if the effectiveness of a test suite

is influenced by the number of test methods it contains. This
research question provides a “sanity check” that supports the
use of the effectiveness metric. Figure 2 shows some of the
data we collected to answer this question. In each subfigure,
the x axis indicates suite size on a logarithmic scale while the
y axis shows the range of normalized effectiveness values we
computed. The red line on each plot was fit to the data with
R’s lm function6. The adjusted r2 value for each regression
line is shown in the bottom right corner of each plot. These
values range from 0.26 to 0.97, implying that the correlation
coefficient r ranges from 0.51 to 0.98. This indicates that
there is a moderate to very high correlation between normal-
ized effectiveness and size for these projects7. The results for
the non-normalized effectiveness measurement are similar,
with the r2 values ranging from 0.69 to 0.99, implying a high
to very high correlation between non-normalized effective-
ness and size. The figure for this measurement can be found
online8.

Answer 1. Our results suggest that, for large Java
programs, there is a moderate to very high correlation
between the effectiveness of a test suite and the number
of test methods it contains.

4.2 Is Coverage Correlated With Effectiveness
When Size Is Ignored?

Research Question 2 asked if the effectiveness of a test suite
is correlated with the coverage of the suite when we ignore
the influence of suite size. Tables 3 and 4 show the Kendall τ
correlation coefficients we computed to answer this question;
all coefficients are significant at the 99.9% level9. Table 3

6Size and the logarithm of size were used as the inputs.
7Here we use the Guildford scale [21] for verbal description,
in which correlations with absolute value less than 0.4 are
described as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 0.9 as
“high”, and over 0.9 as “very high”.
8http://linozemtseva.com/research/2014/icse/
coverage/
9Kendall’s τ is similar to the more common Pearson coef-
ficient but does not assume that the variables are linearly
related or that they are normally distributed. Rather, it
measures how well an arbitrary monotonic function could fit
the data. A high correlation therefore means that we can
predict the rank order of the suites’ effectiveness values given
the rank order of their coverage values, which in practice
is nearly as useful as predicting an absolute effectiveness
score. We used it instead of the Pearson coefficient to avoid
introducing unnecessary assumptions about the distribution
of the data.
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Figure 2: Normalized effectiveness scores plotted against size for all subjects. Each box represents the 1000
suites of a given size that were created from a given master suite.

gives the correlation between the different coverage types
and the normalized effectiveness measurement. Table 4 gives
the correlation between the different coverage types and the
non-normalized effectiveness measurement. For all projects
but HSQLDB, we see a moderate to very high correlation
between coverage and effectiveness when size is not taken
into account. HSQLDB is an interesting exception: when the
effectiveness measurement is normalized by the number of
covered mutants, there is a low negative correlation between
coverage and effectiveness. This means that the suites with
higher coverage kill fewer mutants per unit of coverage; in
other words, the suites with higher coverage contain test
cases that run a lot of code but do not kill many mutants
in that code. Of course, since the suites kill more mutants
in total as they grow, there is a positive correlation between
coverage and non-normalized effectiveness for HSQLDB.

Answer 2. Our results suggest that, for many large
Java programs, there is a moderate to high correlation
between the effectiveness and the coverage of a test suite
when the influence of suite size is ignored. Research
Question 3 explores whether this correlation is caused
by the larger size of the suites with higher coverage.

4.3 Is Coverage Correlated With Effectiveness
When Size Is Fixed?

Research Question 3 asked if the effectiveness of a test
suite is correlated with its coverage when the number of
test cases in the suite is controlled for. Figure 3 shows the
data we collected to answer this question. Each panel shows

Table 3: The Kendall τ correlation between nor-
malized effectiveness and different types of coverage
when suite size is ignored. All entries are significant
at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.75 0.76 0.77
Closure 0.83 0.83 0.84
HSQLDB −0.35 −0.35 −0.35
JFreeChart 0.50 0.53 0.53
Joda Time 0.80 0.80 0.80

Table 4: The Kendall τ correlation between non-
normalized effectiveness and different types of cov-
erage when suite size is ignored. All entries are sig-
nificant at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.94 0.94 0.94
Closure 0.95 0.95 0.95
HSQLDB 0.81 0.80 0.79
JFreeChart 0.91 0.95 0.92
Joda Time 0.85 0.85 0.85

the results we obtained for one project and one suite size.
The project name is given at the top of each column, while
the suite size is given at the right of each row. Different
coverage types are differentiated by colour. The bottom row
is a margin plot that shows the results for all sizes, while the
rightmost column is a margin plot that shows the results for
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Figure 3: Normalized effectiveness scores (left axis) plotted against coverage (bottom axis) for all subjects.
Rows show the results for one suite size; columns show the results for one project. N/A indicates that the
project did not have enough test cases to fill in that frame.

all projects. The figure shows the results for the normalized
effectiveness measurement; the non-normalized effectiveness
measurements tend to be small and difficult to see at this size.
The figure for the non-normalized effectiveness measurement
can be found online with the other supplementary material.

We computed the Kendall τ correlation coefficient between
effectiveness and coverage for each project, each suite size,
each coverage type, and both effectiveness measures. Since
this resulted in a great deal of data, we summarize the results
here; the full dataset can be found on the same website as
the figures.
Our results were mixed. Controlling for suite size always

lowered the correlation between coverage and effectiveness.
However, the magnitude of the change depended on the ef-
fectiveness measurement used. In general, the normalized
effectiveness measurements had low correlations with cover-

age once size was controlled for while the non-normalized
effectiveness measurements had moderate correlations with
coverage once size was controlled for.
That said, the results varied by project. Joda Time was

at one extreme: the correlation between coverage and ef-
fectiveness ranged from 0.80 to 0.85 when suite size was
ignored, but dropped to essentially zero when suite size was
controlled for. The same effect was seen for Closure when
the normalized effectiveness measurement was used.
Apache POI fell at the other extreme. For this project,

the correlation between coverage and the non-normalized
effectiveness measurement was 0.94 when suite size was ig-
nored, but dropped to a range of 0.46 to 0.85 when suite size
was controlled for. While this is in some cases a large drop,
a correlation in this range can provide useful information
about the quality of a test suite.
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A very interesting result is that, in general, the coverage
type used did not have a strong impact on the results. This
is true even though the effectiveness scores (y values) for each
suite are the same for all three coverage types (x values).
To clarify this, consider Figure 4. The figure shows two
hypothetical graphs of effectiveness against coverage. In
the top graph, coverage type 1 is not strongly correlated
with effectiveness. In the bottom graph, coverage type 2 is
strongly correlated with effectiveness even though the y-value
of each point has not changed (e.g., the triangle is at y = 0.8
in both graphs). We do not see this difference between
statement, decision, and MCC coverage, suggesting that the
different types of coverage are measuring the same thing.
We can confirm this intuition by measuring the correlation
between different coverage types for each suite (Table 5).
Given these high correlations, and given that the shape of
the point clouds are similar for all three coverage measures
(see Figure 3), we can conclude that the coverage type used
has little effect on the relationship between coverage and
effectiveness in this study.

Table 5: The Kendall τ and Pearson correlations be-
tween different types of coverage for all suites from
all projects.

Coverage Types Tau Pearson

Statement/Decision 0.92 0.99
Decision/MCC 0.91 0.98
Statement/MCC 0.92 0.97

Answer 3. Our results suggest that, for large Java
programs, the correlation between coverage and effec-
tiveness drops when suite size is controlled for. After
this drop, the correlation typically ranges from low to
moderate, meaning it is not generally safe to assume
that effectiveness is correlated with coverage. The corre-
lation is stronger when the non-normalized effectiveness
measurement is used. Additionally, the type of cov-
erage used had little influence on the strength of the
relationship.

5. DISCUSSION
The goal of this work was to determine if a test suite’s

coverage is correlated with its fault detection effectiveness
when suite size is controlled for. We found that there is
typically a moderate to high correlation between coverage
and effectiveness when suite size is ignored, and that this
drops to a low to moderate correlation when size is con-
trolled. This result suggests that coverage alone is not a
good predictor of test suite effectiveness; in many cases, the
apparent relationship is largely due to the fact that high
coverage suites contain more test cases. The results for Joda
Time and Closure, in particular, demonstrate that it is not
safe in general to assume that coverage is correlated with
effectiveness. Interestingly, the suites for Joda Time and
Closure are the largest and most comprehensive of the five
suites we studied, which might indicate that the correlation
becomes weaker as the suite improves.

In addition, we found that the type of coverage measured
had little impact on the correlation between coverage and
effectiveness. This is reinforced by the shape of the point
clouds in Figure 3: for any one project and suite size, the
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Figure 4: Hypothetical graphs of effectiveness
against two coverage types for four test suites. The
top graph shows a coverage type that is not corre-
lated with effectiveness; the bottom graph shows a
coverage type that is correlated with effectiveness.

clouds corresponding to the three coverage types are similar
in shape and size. This, in combination with the high cor-
relation between different coverage measurements, suggests
that stronger coverage types provide little extra information
about the quality of the suite.

Our findings have implications for developers, researchers,
and standards bodies. Developers may wish to use this
information to guide their use of coverage. While coverage
measures are useful for identifying under-tested parts of a
program, and low coverage may indicate that a test suite is
inadequate, high coverage does not indicate that a test suite
is effective. This means that using a fixed coverage value as
a quality target is unlikely to produce an effective test suite.
While members of the testing community have previously
made this point [13,30], it has been difficult to evaluate their
suggestions due to a lack of studies that considered systems of
the scale that we investigated. Additionally, it may be in the
developer’s best interest to use simpler coverage measures.
These measures provide a similar amount of information
about the suite’s effectiveness but introduce less measurement
overhead.
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Researchers may wish to use this information to guide
their tool-building. In particular, test generation techniques
often attempt to maximize the coverage of the resulting suite;
our results suggest that this may not be the best approach.

Finally, our results are pertinent to standards bodies that
set requirements for software testing. The FAA standard
DO-178B, mentioned earlier in this paper, requires the use of
MC/DC adequate suites to ensure the quality of the resulting
software; however, our results suggest that this requirement
may increase expenses without necessarily increasing quality.
Of course, developers still want to measure the quality

of their test suites, meaning they need a metric that does
correlate with fault detection ability. While this is still an
open problem, we currently feel that mutation score may be
a good substitute for coverage in this context [27].

6. THREATS TO VALIDITY
In this section, we discuss the threats to the construct

validity, internal validity, and external validity of our study.

6.1 Construct Validity
In our study we measured the size, coverage and effective-

ness of random test suites. Size and coverage are straight-
forward to measure, but effectiveness is more nebulous, as
we are attempting to predict the fault-detection ability of a
suite that has never been used in practice. As we described
in Section 3.3, previous and current work suggests that a
suite’s ability to kill mutants is a fairly good measurement
of its ability to detect real faults [2, 3, 10, 27]. This sug-
gests that, in the absence of equivalent mutants, this metric
has high construct validity. Unfortunately, our treatment
of equivalent mutants introduces a threat to the validity of
this measurement. Recall that we assumed that any mutant
that could not be detected by the program’s entire test suite
is equivalent. This means that we classified up to 35% of
the generated mutants as equivalent (see the final row of
Table 2). In theory, these mutants are a random subset of
the entire set of mutants, so ignoring them should not affect
our results. However, this may not be true. For example, if
the developers frequently test for off-by-one errors, mutants
that simulate this error will be detected more often and will
be less likely to be classified as equivalent.

6.2 Internal Validity
Our conclusions about the relationship between size, cov-

erage and effectiveness depend on our calculations of the
Kendall τ correlation coefficient. This introduces a threat to
the internal validity of the study. Kendall’s original formula
for τ assumes that there are no tied ranks in the data; that
is, if the data were sorted, no two rows could be exchanged
without destroying the sorted order. When ties do exist,
two issues arise. First, since the original formula does not
handle ties, a modified one must be used. We used the ver-
sion proposed by Adler [1]. Second, ties make it difficult to
compute the statistical significance of the correlation coef-
ficient. It it possible to show that, in the absence of ties,
τ is normally distributed, meaning we can use Z-scores to
evaluate significance in the usual way. However, when ties
are present, the distribution of τ changes in a way that de-
pends on the number and nature of the ties. This can result
in a non-normal distribution [18]. To determine the impact
of ties on our calculations, we counted both the number of
ties that occurred and the total number of comparisons done

to compute each τ . We found that ties rarely occurred: for
the worst calculation, 4.6% of the comparisons resulted in a
tie, but for most calculations this percentage was smaller by
several orders of magnitude. Since there were so few ties, we
have assumed that they had a negligible effect on the normal
distribution.
Another threat to internal validity stems from the possi-

bility of duplicate test suites: our results might be skewed if
two or more suites contain the same subset of test methods.
Fortunately, we can evaluate this threat using the informa-
tion we collected about ties: since duplicate suites would
naturally have identical coverage and effectiveness scores,
the number of tied comparisons provides an upper bound
on how many identical suites were compared. Since the
number of ties was so low, the number of duplicate suites
must be similarly low, and so we have ignored the small skew
they may have introduced to avoid increasing the memory
requirements of our study unnecessarily.
Since we have studied correlations, we cannot make any

claims about the direction of causality.

6.3 External Validity
There are six main threats to the external validity of our

study. First, previous work suggests that the relationship
between size, coverage and effectiveness depends on the dif-
ficulty of detecting faults in the program [3]. Furthermore,
some of the previous work was done with hand-seeded faults,
which have been shown to be harder to detect than both
mutants and real faults [2]. While this does not affect our
results, it does make it harder to compare them with those
of earlier studies.
Second, some of the previous studies found that a rela-

tionship between coverage and effectiveness did not appear
until very high coverage levels were reached [14,17,24]. Since
the coverage of our generated suites rarely reached very high
values, it is possible that we missed the existence of such
a relationship. That said, it is not clear that such a rela-
tionship would be useful in practice. It is very difficult to
reach extremely high levels of coverage, so a relationship that
does not appear until 90% coverage is reached is functionally
equivalent to no relationship at all for most developers.
Third, in object-oriented systems, most faults are usu-

ally found in just a few of the system’s components [12].
This means that the relationship between size, coverage and
effectiveness may vary by class within the system. It is there-
fore possible that coverage is correlated with effectiveness
in classes with specific characteristics, such as high churn.
However, our conclusions still hold for the common practice
of measuring the coverage of a program’s entire test suite.

Fourth, there may be other features of a program or a suite
that affect the relationship between coverage and effective-
ness. For example, previous work suggests that the size of a
class can affect the validity of object-oriented metrics [11].
While we controlled for the size of each test suite in this
study, we did not control for the size of the class that each
test method came from.
Fifth, as discussed in Section 3.2, our subjects had to

meet certain inclusion criteria. This means that they are
fairly similar, so our results may not generalize to programs
that do not meet these criteria. We attempted to mitigate
this threat by selecting programs from different application
domains, thereby ensuring a certain amount of variety in the
subjects. Unfortunately, it was difficult to find acceptable
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subjects; in particular, the requirement that the subjects
have 1,000 test cases proved to be very difficult to satisfy. In
practice, it seems that most open source projects do not have
comprehensive test suites. This is supported by Gopinath et
al.’s study [20], where only 729 of the 1,254 open source Java
projects they initially considered, or 58%, had test suites at
all, much less comprehensive suites.
Finally, while our subjects were considerably larger than

the programs used in previous studies, they are still not large
by industrial standards. Additionally, all of the projects
were open source, so our results may not generalize to closed
source systems.

7. FUTURE WORK
Our next step is to confirm our findings using real faults

to eliminate this threat to validity. We will also explore
dataflow coverage to determine if these coverage types are
correlated with effectiveness.

It may also be helpful to perform a longitudinal study that
considers how the coverage and effectiveness of a program’s
test suite change over time. By cross-referencing coverage
information with bug reports, it might be possible to isolate
those bugs that were covered by the test suite but were
not immediately detected by it. Examining these bugs may
provide insight into which bugs are the most difficult to
detect and how we can improve our chances of detecting
them.

8. CONCLUSION
In this paper, we studied the relationship between the

number of methods in a program’s test suite, the suite’s
statement, decision, and modified condition coverage, and the
suite’s mutant effectiveness measurement, both normalized
and non-normalized. From the five large Java programs we
studied, we drew the following conclusions:

• In general, there is a low to moderate correlation be-
tween the coverage of a test suite and its effectiveness
when its size is controlled for.

• The strength of the relationship varies between software
systems; it is therefore not generally safe to assume
that effectiveness is strongly correlated with coverage.

• The type of coverage used had little impact on the
strength of the correlation.

These results imply that high levels of coverage do not
indicate that a test suite is effective. Consequently, using a
fixed coverage value as a quality target is unlikely to produce
an effective test suite. In addition, complex coverage mea-
surements may not provide enough additional information
about the suite to justify the higher cost of measuring and
satisfying them.
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Abstract The verification and validation activity plays a fundamental role in improv-
ing software quality. Determining which the most effective techniques for carrying
out this activity are has been an aspiration of experimental software engineering
researchers for years. This paper reports a controlled experiment evaluating the
effectiveness of two unit testing techniques (the functional testing technique known
as equivalence partitioning (EP) and the control-flow structural testing technique
known as branch testing (BT)). This experiment is a literal replication of Juristo et al.
(2013). Both experiments serve the purpose of determining whether the effectiveness
of BT and EP varies depending on whether or not the faults are visible for the
technique (InScope or OutScope, respectively). We have used the materials, design
and procedures of the original experiment, but in order to adapt the experiment to
the context we have: (1) reduced the number of studied techniques from 3 to 2;
(2) assigned subjects to experimental groups by means of stratified randomization
to balance the influence of programming experience; (3) localized the experimental
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materials and (4) adapted the training duration.We ran the replication at the Escuela
Politécnica del Ejército Sede Latacunga (ESPEL) as part of a software verification
& validation course. The experimental subjects were 23 master’s degree students.
EP is more effective than BT at detecting InScope faults. The session/program and
group variables are found to have significant effects. BT is more effective than EP at
detecting OutScope faults. The session/program and group variables have no effect
in this case. The results of the replication and the original experiment are similar
with respect to testing techniques. There are some inconsistencies with respect to
the group factor. They can be explained by small sample effects. The results for
the session/program factor are inconsistent for InScope faults. We believe that these
differences are due to a combination of the fatigue effect and a technique x program
interaction. Although we were able to reproduce the main effects, the changes to
the design of the original experiment make it impossible to identify the causes of
the discrepancies for sure. We believe that further replications closely resembling
the original experiment should be conducted to improve our understanding of the
phenomena under study.

Keywords Replication ·Experiment ·Unit testing ·Reporting guidelines

1 Introduction

Verification and validation (V&V) activities play a fundamental role in improving
software quality. There are many approaches for carrying out V&V, but we do not
know for certain which technique or combination of techniques is more effective for
each type of software validation: unit, integration or system testing.

Determining the effectiveness of unit testing techniques soon attracted the at-
tention of experimental software engineering (SE) researchers. Way back in 1978,
Myers compared the effectiveness of functional and structural testing techniques
(Myers 1978). Soon after, Basili and Selby studied the effectiveness of functional
and structural techniques and code reading (Basili and Selby 1985), and started up a
much replicated family of experiments.

In this paper, we report the replication of a controlled experiment belonging to
Basili’s family. The original experiment was conducted at the Universidad Politéc-
nica de Madrid (UPM) in December 2005. According to Gómez et al. (2010) and
Gómez (2012), this replication can be classified as a literal (that is, the replication
resembles the original experiment as closely as possible), joint (some of the original
experimenters participated in the replication) and external (the replication was
conducted at a different site) replication of the original experiment. The replication
was conducted at the Escuela Politécnica del Ejército Sede Latacunga (ESPEL) in
Ecuador in December 2011.

The purpose of conducting the replication was to verify the results of the original
experiment, and, in the event of inconsistencies, identify which factors or parameters
could explain the differences between the experiments. The alternative, if this were
not possible, would be to conduct further replications. Another goal of this paper was
to use Carver’s guidelines (Carver 2010) and evaluate their strengths for reporting
replications.

Following Carver’s guidelines, the paper describes information about the original
study in Section 2, details information about the replication in Section 3, compares
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the replication results to the original results in Section 4 and, finally, reports the
conclusions across studies in Section 5.

2 Information About the Original Study

The original experiment was carried out by Juristo et al. (2013). Its aim was to study
how effective structural and functional testing techniques are at detecting faults.
Juristo et al.’s (2013) experiment is, in turn, a differentiated replication of the family
of experiments started by Basili and Selby (1985, 1987) in 1982, and later replicated
by several researchers like Kamsties and Lott (1995) and Wood et al. (1997). The
main difference between the original experiment and Basili’s family of experiments
lies in the way in which the faults were seeded in the programs.

Basili, Selby and others referred to the types of faults used in their experiments
as fairly representative of the defects that tend to occur in software development
(Basili and Selby 1987). Therefore, those experiments evaluated how effective the
testing process is expected to be in practice. However, the fault types used in
Juristo et al.’s (2013) experiment were simpler. They can be divided into two major
categories: faults that can and faults that, at least in theory, cannot be detected by the
structural or functional test case generation strategy (InScope and OutScope faults,
respectively).

The differentiation of the two fault types is useful for studying the effectiveness
of the testing techniques more precisely than before, as it helps to distinguish the
effect of the actual technique (that is, the detection of InScope faults) from the
positive effects that the technique has on the tester but that cannot be attributed
to the technique per se (that is, OutScope faults). Both effects were confounded in
previous experiments.

2.1 Research Questions

The original experiment report does not include an explicit research question.
However, this question can be easily inferred from the experimental design. It can
be stated in GQM (Basili 1992) as follows:

Analyse the application of software testing techniques for the purpose of finding
out how effective they are at unit testing level with respect to different fault types
(InScope, OutScope) from the point of view of testers in the context of a controlled
experiment in academia.

This research question is useful for identifying the key elements of the original
experiment.

(A) Main Factor: The original experiment studied two testing techniques: the
functional testing technique known as equivalence partitioning (EP) and the
control-flow structural testing technique known as branch testing (BT).
The original experiment also tests another technique: code reading by stepwise
abstraction technique (CR). As CR is capable of detecting all fault types, it is
used in the original experiment for the purpose of control not as a main factor.
According to the original experimenters (Juristo et al. 2013), “As a control
group, we have used a technique (the CR technique) with a strategy capable, at
least in theory, of detecting all program faults”.
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(B) Response Variables: Technique effectiveness was measured as the percentage
of faults located by the techniques over the total seeded faults. As the research
question is concerned with InScope and OutScope faults, the effectiveness of
the techniques was calculated separately for each fault type.

(C) Hypotheses:

H10: There is no difference in the effectiveness of EP, BT and CR with
respect to the detection of faults within their scope.

H11: The effectiveness of EP, BT and CR differs with respect to faults within
their scope.

H20: There is no difference in the effectiveness of EP, BT and CR with
respect to the detection of faults outside their scope.

H21: The effectiveness of EP, BT and CR differs with respect to faults
outside their scope.

2.2 Participants

The subjects participating in the experiment were 46 Universidad Politécnica de
Madrid undergraduate computing engineering students. The students were taking
the 4th-year software verification and validation course as part of their five-year
degree programme. Students had little or no professional experience of software
development.

2.3 Design

As a between-subjects design with a total of 46 experimental subjects would result in
very few subjects per group (46/3 � 15) and low statistical power, the authors of the
original study used a within-subjects design, where each subject applied each of the
tested techniques at three different times (sessions). Sessions had no set time limit,
and each session lasted on average four hours. Table 1 summarizes the experimental
design.

Although the within-subjects design increases statistical power, it also poses
several validity threats. For example, carryover, learning effects (maturation) and
fatigue are a possibility:

(a) Carryover:The residual effect that administering one treatment to a subject has
on another treatment administered later to the same subject, where the residual

Table 1 Original experiment design

Program Cmdline Ntree Nametbl

Session Session 1 Session 2 Session 3

Techniq. CR BT EP CR BT EP CR BT EP

Group 1 X – – – X – – – X
Group 2 X – – – – X – X –
Group 3 – X – – – X X – –
Group 4 – X – X – – – – X
Group 5 – – X X – – – X –
Group 6 – – X – X – X – –
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effect increases or decreases the effectiveness of the later treatment, is known as
carryover (Brown 1980). Carryover is an important risk in medical experiments,
as drug residues can remain in the body for quite some time and interact with
later treatments (Senn 2002). It is harder to imagine what underlying cause
could produce a carryover effect in SE. However, carryover has been explicitly
cited in the SE literature (Kitchenham et al. 2003) and hence should be taken
into account.

(b) Learning: Subject performance may increase irrespective of the applied treat-
ments as a result of practice acquired in successive experimental sessions.

(c) Fatigue: Subject performancemay drop as a result of fatigue caused by applying
treatments at short intervals in successive experimental sessions.

To minimize all these threats, the sessions were held one week apart. Even so, as
shown in Table 1, the original experimenters added the session and group variables
to the design in order to determine whether such threats materialize. Specifically, ac-
cording to the original experimenters, the session variable can identify the presence
of learning or fatigue effects, and the group variable can detect carryover effects.

2.4 Artefacts

Several artefacts were used to operationalize the original experimental design:

– Training materials to improve or consolidate subject knowledge of the tech-
niques under study

– Experimental objects on which to apply techniques
– Experimental materials to support experimental task performance.

The above-mentioned artefacts are described in the following. They are all
available at Juristo et al. (2013), with the exception of the programs and fault
descriptions. This is meant to assure that students participating in the experiments
are not acquainted with them beforehand. However, programs and fault descriptions
are available from the original experimenters via email.

2.4.1 Training Materials

The material used to train subjects on the application of the software testing
techniques under study includes:

– Reference guide:Document containing the theoretical foundations and practical
exercises for training experimental subjects in the application of software testing
techniques.

– Slides: Support material for the trainer containing a summary of the reference
guide.

– Training programs: Material used to supplement the theoretical groundwork,
focusing on acquainting experimental subjects with the experiment execution
environment.

2.4.2 Experimental Objects

For testing technique application, there should be at least as many programs
as sessions, seeded with the right faults, because subjects cannot test the same
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program with the same faults twice. The programs and faults used in the original
experiment were:

(A) Programs: Three programs written in C were used: cmdline, nametbl and
ntree. These are the same programs that were used in experiments run by
Kamsties and Lott (1995) or Roper et al. (1997). As these programs are likely
to affect (increase or decrease) the effectiveness of techniques, the programs
were considered as blocking variables for analysis purposes. These programs
perform the following functions:

(a) Cmdline parses a command line to determine whether it is valid. If it is,
it displays a description of the input command line; if it is not, it specifies
why it is incorrect. Note that the program does not execute any of the
commands, but merely validates the input.

(b) Nametbl reads and processes file commands to test a series of functions
used to manage an abstract data type, specifically a particular program-
ming language symbol table.

(c) Ntree reads and processes file commands to test a series of functions used
to manage an abstract data type, specifically an n-ary tree.

(B) Faults: As mentioned earlier, different fault types were seeded in the original
experiment than were used in earlier experiments (e.g.: Kamsties and Lott
1995; Roper et al. 1997).
The foremost difference between the original experiment and earlier exper-
iments is the InScope and OutScope fault categorization for EP or BT. An
InScope fault is a fault that can be detected by a correctly applied technique;
faults are classed as OutScope otherwise.
Thus, for example, unimplemented parts of the specif ication, is a possible exam-
ple of a fault that EP can detect (InScope). EP is capable of revealing this fault
type because it generates test cases for all program specifications, including
non-implemented specifications. Alternatively, code for functionalities that are
not in the specif ication (e.g. when a programmer has mistakenly written or
copied code that implements functions not accounted for in the specification)
is an example of a fault that BT can detect. Branch testing’s strategy prescribes
that test cases should be generated to cover all the alternatives of 100 % of the
code decisions, in which case it should detect superfluous code.
In order to systematically seed programs with faults, faults would have to have
been classified by technique sensitivity. However, the original experimenters
were unable to find any such classification, and they therefore generated the
necessary fault types, shown in Table 2.

Table 2 Fault types (FT) FT Description

1 Unimplemented specification
2 Specific test data for achieving coverage
3 Combination of invalid equivalence classes
4 Chosen combination of valid equivalence classes
5 Test data for combining classes
6 Implementation detail
7 Implementation of unspecified functionality
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Each of the fault types proposed by Juristo et al. (2013) are further
detailed below.

(a) Unimplemented specification: The program does not implement the code for a
particular specification. The BT technique is unable to identify this fault type,
whereas EP will generate test cases capable of revealing this type of faults.

(b) Specific test data for achieving coverage: The program does not cover all the
values specified in the requirements. The BT technique protocol does not
indicate which data to select to assure that the test cases cover code decisions,
whereas EP will generate test cases capable of detecting this fault type.

(c) Combination of invalid equivalence classes: Faults entered in programs by
adding code that does not comply with the program specification. BT is capable
of detecting this fault type, but EP is not.

(d) Chosen combination of valid equivalence classes: Unnecessary functionalities
added to the code, which are already covered by another program specification.
BT is capable of detecting this fault type, whereas EP is not.

(e) Test data for combining classes: Coding faults caused by the inclusion of
functionalities that are not stated in the specifications. EP is not always able
to detect this fault type, because, although the EP strategy prescribes that test
cases should cover all the identified equivalence classes, it does not state exactly
which class data should be selected for the test case. On the other hand, BT will
generate test cases to detect this fault type.

(f) Implementation detail: Faults entered by programmers as a result of the choice
of programming strategy to comply with the program specification. EP is unable
to find this fault type, whereas BT can generate test cases capable of discovering
such faults.

(g) Implementation of unspecified functionality: The program implements a func-
tionality that is not in the specification. The EP technique is unable to identify
this fault type. On the other hand, if applied correctly, BT will reveal such faults.

The programs were each seeded with six faults of the seven fault types. Three
of these faults (called F1-F3) were InScope faults for EP, and the other three (F4-
F6) were InScope faults for BT. Remember that the faults that are InScope for one
technique areOutScope for the other, and vice versa. Table 3 details the faults seeded
in each program.

2.4.3 Experimental Materials

The material used to execute the experiment includes the program specifications,
experimental data collection forms, source code listing with seeded faults, executable
code with seeded faults and guidelines for executing the experiment.

2.5 Context Variables

The original experiment explicitly considered the following contextual variables:

– Environment:Academia
– Subject type:Undergraduate students
– Experience: Students with little or no professional software development

experience



Empir Software Eng (2014) 19:378–417 385

Table 3 Faults seeded in
programs

Technique FT F1 F2 F3 F4 F5 F6

Cmdline
EP 1 X X

2 X
BT 3 X

4 X
5 X

Nametbl
EP 1 X

2 X X
BT 3 X

5 X
7 X

Ntree
EP 2 X X X
BT 3 X

5 X
6 X

– Program type: Small-sized programs (150–220 LOC), with cyclomatic complexi-
ties ranging from 21 to 61

– Program language: C.

2.6 Execution Procedure

The original experiment was executed in three clearly defined stages, which the
original experimenters called pre-session, during-session and post-session.

2.6.1 Pre-session

The pre-session is the stage of the experiment during which experimental subjects
receive training on how to apply the testing techniques. The materials to be used to
execute the experiment are also prepared at this stage. These materials, available in
Juristo et al. (2013), are as follows:

– Experimental objects
– Forms
– Guides

2.6.2 During-Session

This is the stage during which the experiment proper is executed. The subjects take
their places, far enough apart so that they cannot copy, in a room equipped for
the purpose. Subjects will have been randomly assigned to groups before the first
session. This assures that experimenters deliver the right materials to subjects during
the session.

The first phase of the experimental session is test case generation. To do this, the
subjects applying EP are supplied with:
– Experimental object specification (specification of the cmdline, nametbl or ntree

program)
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– Data collection forms for recording the test case and the expected output of each
test case.

For the BT technique, subjects are supplied with:

– Source code listing with seeded faults in order to generate the test cases
– Data collection forms for recording the test cases and the expected output of

each test case.

Note that none of the experimental subjects are given executable code during the
test case generation phase, as the subjects might be tempted to read the programs
instead of generating test cases to detect faults. This would frustrate the purpose of
the experiment, which is to test how effective testing techniques, not software testers,
are at detecting faults.

After they have generated the test cases, they are given:

– Executable code with seeded faults
– Data collection forms for recording the observed output of each test case

execution
– The program specifications in order to test the generated cases
– Data collection forms for recording the detected faults.

The experimental subjects are not allowed to add any other test cases once they
have been given the executable code at the end of the test case generation stage. This
is controlled by the person responsible for monitoring the experiment execution.

Finally, the subjects fill the respective form with the outputs observed during the
execution of each test case. The program faults are inferred from the comparison of
the observed outputs with the expected outputs.

2.6.3 Post-Session

During this stage, all the material used by the experimental subjects is collected,
and the data collection forms containing the test cases designed by the experimental
subjects are detached for analysis. To do this, the test cases generated by the subjects
are compared with previously designed test case templates. This analysis reveals
the faults discovered by each subject applying each technique. This is not a strict
comparison protocol, and test cases containing some sort of formal error that, with a
minor correction, would generally identify faults are rated positively.

2.7 Summary of Results

Repeated measures ANOVA (rANOVA) was used to analyse the results, where
the technique (BT, EP, CR), the program (ntree, cmdline, nametbl) and the group
(six groups, termed G1-G6) were considered as factors. The sessions were not
explicitly considered as factors, as they were confounded with the programs. The
session/program and technique factors were considered as within-subjects factors,
whereas the group factor was treated as a between-subjects factor. The fitted model
was strictly additive and took the form:

Y = TECHNIQUE + PROGRAM +GROUP + e

The results obtained by the original experimenters can be summarized as follows.
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2.7.1 InScope Response Variable

The rANOVA provided significant results for all factors: technique, program/session
and group:

(A) Technique: The significant rANOVA result leads to the null hypothesis being
rejected. Pairwise comparison showed that the code reading technique was
less effective than the equivalence partitioning and branch testing techniques.
In actual fact, code reading detected approximately 54 % of faults, whereas
branch testing and equivalence partitioning detected 67.67 and 78.70 % of the
seeded faults, respectively.

(B) Program/session: The significant rANOVA result suggests that either the
program or the session influences effectiveness, but, as they are confounded,
there is no way of reliably telling which one really has a bearing. Although the
program/session interaction could theoretically have an effect, it is unlikely
to do so because there is no reason why a program should increase the
effectiveness of a session or vice versa.
The pairwise comparison reveals that cmdline<nametbl<ntree (we use the
“<”symbol to indicate that subjects are less effective for cmdline than for
nametbl and so on for all other variables). Alternatively, S1<S3<S2. The
differences are only significant for cmdline/S1 and ntree/S2. As the design type
used confounds the session and program variables, there are three possible
grounds for the observed results: learning, fatigue or the possibility of one
program being easier to test than another. If there were a learning effect,
we should observe S1<S2<S3. If there were a fatigue effect (very unlikely,
however, as the sessions were held one week apart), we should find that
S3<S2<S1. Consequently, the program rather than the session is more likely
to have a bearing on effectiveness.

(C) Group: As already mentioned, the group factor was introduced to detect the
presence of carryover, as the original experiment had a within-subjects design.
Pairwise comparison reveals significant differences of effectiveness among the
sequences EP-CR-BT and EP-BT-CR and BT-CR-EP with respect to the
order in which the techniques were applied. With a fault detection rate of
82.41 %, the EP-CR-BT sequence was more effective than the EP-BT-CR
and BT-CR-EP sequences with rates of 55.55 and 57.41 %, respectively. As
there are some significant differences between some levels of this factor but
not between others, the original experimenters claimed that there does not
appear to be any carryover effect from one technique to another.

2.7.2 OutScope Response Variable

The rANOVA provided significant results for all the factors: technique, pro-
gram/session and group.

(A) Technique: The significant rANOVA result leads to the null hypothesis being
rejected. Pairwise comparison shows that the equivalence partitioning tech-
nique was less effective (14.12%) than the branch testing technique (29.09%).

(B) Program/session: In this case again, the rANOVA result is significant and sug-
gests that either the program or the session influences effectiveness. Because
the program and session are confounded, there is no way of reliably telling
which has a bearing on effectiveness.
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The pairwise comparison shows that cmdline<nametbl (or, in session terms,
S1<S3). Ntree (or S2) does not have significant differences with respect to the
other two programs (sessions). This difference of effectiveness between S1 and
S3 could be attributed to the session and not to the program. However, the
results on technique effectiveness for Inscope faults, plus the fact that there
are no statistical differences between S3 and S2, led the original experimenters
to conclude that it is the program and not the session that makes the difference.
As for the InScope faults, there would again be no learning effect.

(C) Group: Pairwise comparison reveals significant differences of effectiveness
among sequences EP-CR-BT (8.33%), and CR-BT-EP and EP-BT-CR (35.42
and 36.11 %, respectively) only with respect to the order in which the tech-
niques were applied. As with the InScope variable, the original experimenters
claimed that there does not appear to be any carryover effect improving
technique effectiveness for faults outside their scope due to the order of
technique application.

3 Information About the Replication

The replication was conducted at the Escuela Politécnica del Ejército sede Latacunga
(ESPEL), Ecuador, with Master in Software Engineering students taking a software
verification and validation course. The duration of this course is 80 h divided into
seven, 10-h face-to-face sessions and a 10-h off-campus period set aside for home-
work and academic administrative matters. The face-to-face sessions were divided
into three stages. In the first stage, the first part of the theoretical groundwork of the
training was taught across three consecutive sessions. This was followed by a three-
day break. Then the second stage (two consecutive sessions) covered the second
theoretical part and training exercises. The third stage was the replication, which
was run across two consecutive sessions as of the following day. The replication was
one of the course assessment tests that carried most weight. This was done purposely
to assure that students were motivated.

3.1 Motivation for Conducting the Replication

Themain reason for conducting a replication was to confirm the results of the original
experiment or, in the event of inconsistencies, identify the factors and parameters
that might have caused such inconsistencies. This could, if necessary, trigger another
replication cycle. The independent experiment replication should, secondarily, help
to improve our competence at applying empirical methods in SE research.

3.2 Level of Interaction with the Original Experimenters

There was a lot of interaction with the original experimenters in the phases prior to
the execution of the experimental replication. The replication was executed without
the involvement of the original experimenters. Finally, the original experimenters
played a very minor role in data collection and analysis.

(A) At the start of the replication we had to gain a profound understanding
of the original experiment. For this purpose we held several meetings with
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the original experimenters. Once we had a thorough understanding of the
experiment, the next step was to adapt the design of the original experiment
to the context where the replication was to be carried out. As a result of
this adaptation, we generated a design document, which was validated by the
original experimenters. Finally, we were given the artefacts of the original
experiment.

(B) We did not have any interaction with the original experimenters during the
preparation of the trainingmaterials, training proper and replication execution.

(C) After we had executed the replication, the original experimenters explained
the procedure for identifying whether or not a test case reveals a fault from the
questionnaires completed by each experimental subject.

3.3 Changes to the Original Experiment

Generally speaking, the replication is quite true to the original experiment in all re-
spects. The hypotheses, factors, faults, response variable, materials and experimental
procedure are all unchanged, save the following exceptions:

– We have eliminated one of the main factor levels. Specifically, we did not test
the code reading technique, primarily because it was impossible to run three
experimental sessions in the time available for running the replication.

– As we have omitted one of the techniques, one of the three sessions and one
of the three programs are unnecessary. In fact, we have omitted the cmdline
program and reduced the number of sessions from three to two.

– We have altered the order in which the programs were used in order to study
whether it is the program or the session that influences technique effectiveness.

– We have run the replication with a group of experimental subjects that have
different characteristics than the subjects of the original experiment.

– We have applied stratified randomization (Kernan et al. 1999) to assign subjects
to experimental groups in order to assure balanced groups.

– We have adapted the training to the time constraints of the course on which the
replication was run.

– We have localized the experimental materials to the dialectal differences of
Ecuadorian Spanish.

Table 4 summarizes the changes. The changes are described in more detail in
the following.

3.3.1 Changes to the Main Factor Levels

According to the software verification and validation course schedule, only two days
were available for running the experiment, whereas three days (one per session) had
been spent on the original experiment. We had two options in this respect:

1. Squeeze two experimental sessions into one day.
2. Eliminate one of the technique factor levels.

A third option, which meant splitting a session across two days, was rejected
outright as there was a risk of the intermission affecting student performance or
simply of students swapping notes.
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Table 4 Differences between UPM and ESPEL

Activity Characteristic UPM ESPEL

Design Randomization Normal Stratified
Sessions 3 2
Main factor CR, BT, EP BT, EP
Programs cmdline, ntree, nametbl nametbl, ntree
Groups 6 2
Dialectal differences in Castilian Spanish Ecuadorian Spanish
materials

Recruitment Number 46 23
Type Undergraduate students Master’s students
Professional experience Generally inexperienced Yes

Training Training type Face-to-face Semi-distance
Duration 12 h 50 h

Execution Duration 3 sessions, unlimited 2 sessions, unlimited
time time

Finally, we went for the second of the two options. The fact that the sessions were
scheduled for two consecutive days (Saturday and Sunday) went against the first
option: it would have been very demanding on students to take part in three sessions
without a break, and the resulting fatigue could have had a negative influence on the
results. Also, the fact that the original experiment really tested the functional and
structural techniques, whereas code reading was primarily a control technique, and
therefore optional, favoured the second option.

Consequently, the factor levels were the functional testing technique known as
equivalence partitioning (EP) and the control-flow structural testing technique known
as branch testing (BT), each applied in one session by two groups of experimental
subjects (Group 1 and Group 2). Table 5 shows the resulting experimental design.

3.3.2 Changes to the Secondary Factor Levels

The omission of one the testing techniques (code reading) makes one of the three
sessions unnecessary. Consequently, it was also necessary to eliminate one of the
programs used in the original experiment. We left out the cmdline program for two
key reasons:

1. Experimental subjects stated, during the original experiment and other experi-
ments of the same family (Juristo and Vegas 2003), that the cmdline programwas
a harder to understand and test than ntree and nametbl. Testing techniques are
generally less effective on cmdline, suggesting that this program is more complex,
as discussed in Section 2.7.

2. The ntree and nametbl programs are similar to each other (146-172 LOC
and a cyclomatic complexity of 21-29, respectively), and both are different to

Table 5 Replication design Session Session 1 Session 2

Program Nametbl Ntree

Technique BT EP BT EP

Group 1 X – – X
Group 2 – X X –
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cmdline (209 LOC and a cyclomatic complexity of 61). cmdline’s high cyclomatic
complexity is a possible explanation for it being harder to test.

In the original experiment (see Table 1), the cmdline program was used in Session
1, whereas ntree and nametbl were used in Sessions 2 and 3, respectively. This would
apparently signify that the sessions in the original experiment and the replication
are not comparable, as they are associated with different programs. However, this
should not be a problem as there is unlikely to be any relationship between session
and program, as already stated.

3.3.3 Change to the Order of Program Use

As discussed in Section 2.7, the analysis is unable to distinguish whether the effects
are due to either factor because program/session are confounded. This is a peculiarity
of the cross-over design used in the original experiment. In this replication, they are
again confounded because we adhere to the original design. On this ground, we have
decided to change the order in which the programs are used from ntree then nametbl
in the original experiment to nametbl then ntree in the replication. By comparing
the original and replicated experiment, we expect to be able to identify whether the
possible effects are really due to the program or the session.

3.3.4 Change to Population Type

The subjects of the original experiment at the UPM were undergraduate stu-
dents, most of whom had little or no professional experience. On the other
hand, the subjects of the replication at ESPEL were master’s students, many of
whom did have professional programming, architectural design or other software
development experience.

Because of their higher academic and professional level, the marginal means of
ESPEL subjects should be greater than for UPM subjects. However, this should
not affect the comparisons between factors and treatments, as the implemented
stratified randomization (see Section 3.3.5) assures that the experimental groups
are homogeneous.

3.3.5 Balancing Experimental Groups

The design of the replication called for the formation of two groups of experimental
subjects called Group 1 and Group 2. These two groups were formed from 23 experi-
mental subjects. Because the subjects of the ESPEL replication have a different level
of professional experience than the subjects of the original experiment, we decided
to stratify the groups depending on this characteristic to assure a more reliable
balancing of groups. To do this, we conducted a survey of 21 subjects (two did not
attend on the day that the survey was administered) to get a better picture of their
professional experience, assuming that professional programmers or testers would
apply the techniques more effectively than subjects with less experience.

In the survey, the experimental subjects were asked about their general pro-
gramming experience, C programming experience and software testing technique
experience. The results are illustrated in Figs. 1, 2 and 3, and tabulated in Table 21 of
Appendix B.
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Fig. 1 Survey results—programming

We found that almost half of the experimental subjects are professional program-
mers, whereas the other half have only programmed as part of practical assignments.
C is not the most popular programming language used by subjects for formal
development, but they are all acquainted with the language, at least in theory.
A considerable percentage (20 %) of experimental subjects are not familiar with
software testing techniques. None are professional testers, and generally they have
only used testing techniques as part of practical assignments.

Experience in both C and the testing will definitely have an effect. However,
81 % of subjects have no professional experience in C, whereas none of the subjects
have professional testing experience. The difference in the effectiveness between
inexperienced and experienced subjects will be very small for both variables, as the
value range is from No experience to I have done practical assignments. Therefore,
we can assume that experience in C and testing will have a rather small effect or, at
least, less than professional experience in programming is likely have.

Fig. 2 Survey results—C programming
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Fig. 3 Survey results—software testing

On the other hand, programming experience did vary considerably (roughly 40%
of subjects have professional programming experience, compared with 60 % who do
not), and it is reasonable to assume that this experience may well have a bearing.
On this ground, we conducted a stratified randomization (Kernan et al. 1999) based
on programming experience. The two subjects that were not surveyed were each
allocated to one group (G1 (EP-BT) or G2 (BT-EP)) at random.

In this way, we produced two groups of experimental subjects that were bal-
anced with respect to programming knowledge. With respect to C programming
experience, both groups were balanced regarding the number of subjects that used
C in industry or academia (around 20 and 80 %, respectively), as shown in Fig. 4.
G1 subjects had a slight advantage in terms of the type of experience that they
had acquired in academia. Of G1 group subjects, 54 % have used C in practical
assignments, whereas the remaining 27.3% know the theory or have completed short
exercises. The respective percentages for the G2 group are 30 and 50 %.

The G1 group also appears to have slightly more software testing technique
experience, as shown in Fig. 5. Of these subjects, 45.5 % have experience in practical
assignments, whereas the remaining 54.6% know the theory or have completed short
exercises. The respective percentages in the G2 group are 20 % and 80 %.

This imbalance between groups could result in subjects from the EP-BT group
being generally more effective than subjects from the BT-EP group. Although we
think this is a remote possibility, it should be taken into account during the discussion
of the results of the replication. The between-group differences are confined to
some subjects in the G1 group having completed more practical assignments than
G2 group members. We have the feeling that any difference there is will be small.
Additionally, all subjects have received special-purpose training in software testing
before the experiment, which includes practical exercises. This training should have
further reduced the differences between the groups.

3.3.6 Training Adaptation

The teaching method applied in the original experiment was divided into three
four-hour sessions plus homework, each of which was held one week apart. The
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Fig. 4 Results of the stratified randomization for C programming

replication training, on the other hand, had to be adapted to the semi-distance teach-
ing method at ESPEL, with five consecutive 10-h sessions, during which students
completed all the practical exercises. In view of this training method, the fatigue
factor is a validity threat, which may have influenced subject performance.

3.3.7 Localization

Although similar syntactically, the Spanish spoken in Spain (Castilian) and the
Spanish spoken in Latin America, particularly Ecuador, are slightly different with
respect to the words and idioms used locally. On this ground, we modified details,
such as terms and phrases, that are not common in the dialect spoken in the area
where the replication was conducted to ease understanding. We also corrected some
minor ambiguities found in the original material. The material used for replication
purposes is available at: http://www.grise.upm.es/sites/extras/12/.

http://www.grise.upm.es/sites/extras/12/
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Fig. 5 Results stratified randomization for testing experience

3.4 Replication Execution

The replication was executed according to a similar procedure to the original
experiment. The subjects were given the same experimental materials (experimental
objects, program specifications, source code listing with seeded faults, forms, guides
and executable code with seeded faults), and generated and proceeded to execute
test cases in order to check that the identified faults caused failures. There were no
major events (e.g. drop-outs, errors in materials delivery, etc.) during the replication
execution. The data were analyzed according to the same procedure as in the original
experiment.

Table 6 Test of within-subjects effects

Source Type III sum of squares df Mean square F Sig.

Technique 1999.054 1 1999.054 4.517 0.046
Session/program 4655.948 1 4655.948 10.520 0.004
Error (technique) 9294.241 21 442.583
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Table 7 Test of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Intercept 68201.322 1 68201.322 100.846 0.000
Group 6028.757 1 6028.757 8.914 0.007
Error 14202.195 21 676.295

3.5 Replication Results

This section describes the results of the replication. Specifically, we report the
hypothesis tests and multiple comparisons for each response variable (InScope or
OutScope). The raw data and descriptive statistics are reported in Appendix C.

Like the original experiment, the experimental design used in the replication lends
itself to a repeated-measures analysis of variance (rANOVA) and the same additive
model. SPSS V.20 was used for all calculations.

3.5.1 Response Variable: Ef fectiveness for Faults Within Technique Scope

There are two requirements for applying a rANOVA: homogeneity of the covariance
matrices and sphericity.

Box’s M test is used to check the condition of homogeneity of covariancematrices.
Box’s M tests the null hypothesis that the observed covariance matrices of the
dependent variables are equal across groups (Meyers et al. 2006). For our sample,
M = 3.755, F = 1.122, df1 = 3, df2 = 111064.484, sig. = 0.338, that is, the results
verify the null hypothesis and the data are, therefore, homogeneous.

Mauchly’s test is used to check the sphericity condition. In our case, how-
ever, there are only two levels of repeated measures (for both technique and
session/program), which precludes a sphericity violation (Meyers et al. 2006), and,
therefore, the test is unnecessary.

As the analysis contains within- and between- subjects factors, we obtain two
different tables, one for each factor type, instead of the standard ANOVA table
(Tables 6 and 7). The results suggest that the technique, session/program and
group factors all influence the effectiveness with respect to the detection of faults
within technique scope. Therefore, the null hypothesis (there is no difference in
the effectiveness of equivalence partitioning and branch testing with respect to the
detection of faults within their scope) for this response variable is rejected.

The results of the pairwise comparison for the Technique factor, which are shown
in Table 8, suggest that branch testing is less effective than equivalence partitioning
(with an effectiveness of 31.943 and 45.140% respectively).

The pairwise comparisons for the session/program factor suggest that S1/nametbl
is more effective than S2/ntree (with an effectiveness of 48.612 and 28.471 %,
respectively), as shown in Table 9. As only one program is used in a session, it
is not possible at this point to distinguish whether the effect is produced by the

Table 8 Pairwise comparisons test for technique

Tech1 Tech2 Mean dif. Std. dev. Sig.

BT EP −13.197 6.210 0.046
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Table 9 Pairwise comparisons test for program

Prog1 Prog2 Mean dif. Std. dev. Sig.

S1/nametbl S2/ntree 20.140 6.210 0.004

Table 10 Pairwise comparisons test for group

Group1 Group2 Mean dif. Std. dev. Sig.

BT-EP EP-BT −22.918 7.676 0.007

Table 11 Test of within-subjects effects

Source Type III sum of squares df Mean square F Sig.

Technique 2905.36 1 2905.36 5.567 0.028
Session/program 6.577 1 6.577 0.013 0.912
Error (technique) 10959.95 21 521.902

Table 12 Test of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Intercept 17357.588 1 17357.588 20.086 0.000
Group 354.129 1 354.129 0.41 0.529
Error 18147.296 21 864.157

Table 13 Pairwise comparisons test for technique

Tech1 Tech2 Mean dif. Std. dev. Sig.

BT EP 15.910 6.743 0.028

Table 14 Pairwise comparisons test for program

Prog1 Prog2 Mean dif. Std. dev. Sig.

S1/nametbl S2/ntree 0.757 6.743 0.912

Table 15 Pairwise comparisons test for group

Group1 Group2 Mean dif. Std. dev. Sig.

BT-EP EP-BT 5.554 8.677 0.529
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session, by the program or by both. We will try to clarify whether the session or
the program caused the observed effect when we examine the OutScope faults and,
especially, when we compare the replication results with the original experiment.

The results of the pairwise comparison for the Group factor suggest that the
BT-EP group (which applies branch testing in session 1 followed by equivalence
partitioning in session 2) is less effective than the EP-BT group (with an effectiveness
of 27.082 and 50.00 %, respectively), as shown in Table 10.

There are two possible explanations for this result:

– A carryover effect could be influencing the effectiveness of techniques depend-
ing on whether they are applied in first or second place. Carryover signifies an
increase (or decrease) in the effectiveness of the technique that a subject applies
in second place.

– As mentioned earlier in Section 3.3.5, the EP-BT group is slightly more experi-
enced than the BT-EP group in C and software testing. This superior experience
could explain why the EP-BT group is more effective.

We will try to determine whether the observed effect is to due to between-group
differences or carryover when we study the OutScope faults and, later, when we
compare the results of the replication with the original experiment.

3.5.2 Response Variable: Ef fectiveness for Faults Outside Technique Scope

We check whether the sample has the sphericity and homoscedasticity properties
before conducting the statistical analysis. Mauchly’s W and Box’s M statistics again
confirmed those properties (W = 1.000, Approx. Chi-Square = 0.000, df = 0, Sig. =
0.000; M = 11.947, F = 0.429, df1 = 3, df2 = 111064.484, Sig. = 0.732).

The analysis results, which are shown in Tables 11 and 12, suggest that there are
significant differences for the technique factor, but not so for the session/program
and group factors. Therefore, as in the case of the InScope response variable, the
null hypothesis is rejected.

Regarding the Technique factor, Table 13 shows that branch testing is more
effective than equivalence partitioning for faults outside technique scope (with an
effectiveness of 31.943 and 11.489%, respectively). These results reveal the opposite
pattern to the analysis of the InScope faults reported in Section 3.5.1 (that is,
branch testing is less effective than equivalence partitioning for faults within technique
scope). This suggests that equivalence partitioning is more sensitive to faults within
its scope, but branch testing is better at detecting faults outside its scope.

The multiple comparisons for the session/program factor, shown in Table 14,
suggest that there are no significant differences between the levels of this factor.
However, the results of the InScope response variable, which were reported in
Section 3.5.1, did suggest that there were significant differences. There is no apparent
reason why the session/program factor should behave differently depending on fault
types. Therefore, we are unable to venture any hypothesis to explain this discrepancy
considering just the replication results.

The multiple comparisons for the Group factor, shown in Table 15, suggest
that, unlike our findings for the InScope response variable, there are no significant
differences between BT-EP and EP-BT.

In Section 3.5.1, we ventured two hypotheses to explain the results for InScope
faults: the existence of a carryover effect or, alternatively, the EP-BT group’s supe-
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rior C and testing technique experience. In either case, we would expect this effect
to be the same irrespective of the fault type. Again considering only the replication
results, we are unable to venture any reason why effects should be significant for the
InScope response variable.

4 Comparison of Replication Results to Original Results

Because our replication uses a subset of factor levels of the original experiment,
we will not be able to contrast all the results of the original experiment with
the replication, and some will be only partially comparable. The branch testing
and equivalence partitioning levels of the technique factor are comparable in both
experiments, but we left out the stepwise abstraction technique, which is used only in
the original experiment.

The session/program factor is partially comparable, as the programs used in
the two experiments (nametbl and ntree) correspond to different sessions in each
experiment (sessions 1 and 2 in ESPEL and sessions 3 and 2 in UPM, respectively).
We clearly define whether we are referring to the program or session in each case.

In the case of the group factor, it is the technique factor levels and experiment
sessions that define the levels of each group. Six different groups were formed in the
original experiment and only two in the replication. The two groups formed in the
replication are subsets of two of the six groups of the original experiment. Therefore,
they are only comparable at a very high level.

Sections 4.1 and 4.2 contain the similarities and differences, respectively, between
the original experiment and the replication.

4.1 Consistent Results

The consistent results between the original experiment and the replication refer to
the technique factor for both the InScope andOutScope response variables, as shown
in Table 16. This table summarizes the results obtained in the multiple compar-
isons for the original experiment (UPM) and the replication (ESPEL), specifying
whether the null hypothesis (there is no difference in the effectiveness of equivalence
partitioning and branch testing with respect to the detection of faults) is rejected
or accepted and showing the observed pattern (order relationship) between the
factor levels.

4.1.1 InScope Response Variable

Branch testing is less effective than equivalence partitioning in both experiments,
albeit with some fine distinctions. Firstly, as shown in Table 16, at ESPEL we have
obtained significant differences between the technique levels, whereas the difference
was not so grand at UPM. However, the patterns are the same (BT < EP) in
both cases.

Table 16 UPM-ESPEL
comparison—technique factor

Response H0 Tendency

Variable Upm Espel Upm Espel

InScope Accept Reject BT < EP BT < EP
OutScope Reject Reject BT > EP BT > EP
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Secondly, the marginal means for the technique factor at ESPEL are lower than
at UPM (branch testing with 31.943 vs. 67.670 % and equivalence partitioning with
45.140 and 78.704 %, respectively). Finally, branch testing technique dispersion is
lower at ESPEL than at UPM, as shown in Fig. 6.

Branch testing’s lower dispersion at ESPEL may explain why the difference be-
tween branch testing and equivalence partitioning is significant at ESPEL. BT’s wider
dispersion at UPM may be due to the fact that UPM subjects are undergraduate
students, in general without professional experience, and therefore their testing
abilities may vary considerably. This would generate wide interquartile ranges. As
a consequence, the null hypothesis could not be rejected at UPM, causing the

Fig. 6 Boxplot for technique at UPM and ESPEL—InScope
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impression that the results at UPM and ESPEL are slightly different, when they
really are consistent.

Why the subjects are less effective at ESPEL than at UPM is another question.
Themost likely reason is that the course on which the experimentwas run is intensive
(long lecture hours concentrated over just a few days). This may have influenced
technique effectiveness, as subjects may not have had enough time to practice and
consolidate the usage of the techniques. Branch testing would be more adversely
affected, since subjects told us at post-experimental meetings that BT is harder
to understand and apply than EP. Another potential factor, besides the teaching
method, is trainer inexperience in teaching the software verification and validation
course, especially under such circumstances.

4.1.2 OutScope Response Variable

The results obtained at UPM for this response variable were confirmed at ESPEL,
as the null hypothesis is rejected in both cases, and, besides, the trend is the same
as shown in Table 16, where branch testing is more effective than equivalence
partitioning for faults that are outside their scope. The values of the marginal
means are slightly lower at ESPEL (27.398 % for branch testing and 11.489 % for
equivalence partitioning) than at UPM (29.089 % for branch testing and 14.119 %
for equivalence partitioning). The dispersions are generally quite similar, albeit,
predictably for undergraduate students, slightly wider at UPM, as shown in Fig. 7.
It is interesting to note that the low technique effectiveness at ESPEL is much more
marked for the InScope than for the OutScope faults, considering that the differences
in the training (both course intensiveness and possibly trainer inexperience) should
(in principle) affect both response variables more or less equally.

A possible explanation for better branch testing performance with OutScope
faults is that the test case generation strategy requires an analysis of source code,
at which point subjects could informally apply code inspection and thus round out
the technique. This is a convincing explanation for two reasons:

– Subjects applying the equivalence partitioning technique do not have the source
code of the program that they are testing (only the executable), as mentioned
in Section 2.6.2. Consequently, their fault detection proficiency should be very
low. This is precisely what we found, as the mean effectiveness of experimental
subjects is 11.5 %, that is, each subject identifies on average 0.3 faults.

– Without the help of testing techniques, subjects with comparable characteristics
(programming experience, years of experience industry, etc.) should locate more
or less the same faults. We expect to observe that ESPEL subjects are more
effective than UPM subjects because they have some professional experience.
We found that the effectiveness of both subject groups (ESPEL and UPM) is
more or less equal. Now, this is precisely what we would expect to find if the
ESPEL subjects were to be suffering from fatigue as a result of experiment
planning, as discussed in Section 4.1.1. Another reasonable hypothesis in the light
of the results is that subjects apply informal code reading during the application
of the branch testing technique.

Even though this is a reasonable hypothesis, it needs to be corroborated in
future replications.
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Fig. 7 Boxplot for technique at UPM and ESPEL—OutScope

4.2 Differences in Results

The differences between the results of the original experiment and the replication
refer to the session/program and group factors. Both are dealt with separately in the
following.

4.2.1 Dif ferences with Respect to the Session/Program Factor

Table 17 summarizes the comparison for the session/program factor.

(A) InScope Response Variable With respect to session/program factor, testing
was more effective at UPM when the ntree program was applied, whereas just
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Table 17 UPM-ESPEL comparison—session/program factor

Response H0 Tendency

Variable Upm Espel Upm Espel

InScope Accept Reject S3 < S2 S1 > S2
ntbl < ntree ntbl > ntree

OutScope Accept Accept S3 > S2 S1 < S2
ntbl > ntree ntbl < ntree

the opposite was the case at ESPEL, where nametbl was more effective as
shown in Fig. 8. Additionally, the differences are significant at ESPEL, whereas
at UPM they are not.
We changed the order in which the ntree and nametbl programs were applied
in the replication. This change is designed to clarify whether it is the session
or program (as the original experimenters claim) that is causing the observed
effect.
ESPEL results contradict UPM results, suggesting that causal factor is proba-
bly the session and not the program.
Fatigue could be the mechanism through which the session influences
effectiveness. Note that the experiment was run on an intensive academic pro-
gramme and experimental sessions were held only one day apart. Therefore,
subjects might well have been fatigued when they arrived at the experimental
sessions (notice, in this respect, that the marginal means of effectiveness are
always lower at ESPEL than at UPM and that, in particular, S2 was less
effective than S1 (as Fig. 8 clearly shows).
The possibility of a fatigue effect is a convincing hypothesis on two grounds.
Firstly, the sharp drop in effectiveness from S1 to S2 would explain why the
S1/nametbl and S2/ntree differences turned out to be significant. If fatigue
had had no effect, the differences would have been smaller and possibly not
significant, which is what was found at UPM (where the sessions were held one
week apart). Secondly, the effect size for the session/program factor (shown
in Table 9) is abnormally high compared with the technique factor (shown in
Table 8). The fatigue effect is also compatible with this finding.
In any case, the data gathered in the two experiments are still not enough to
determine which factor (session or program) is really having a bearing, so yet
more replications will be necessary to clarify this point.

(B) OutScope Response Variable Neither experiment observed significant
differences with respect to the OutScope variable. The above-mentioned
possibility of a fatigue effect is entirely consistent with the fact that S2/ntree
is less effective than S1/nametbl, as shown in Fig. 9.

The ESPEL andUPM results have a completely different pattern, giving the visual
impression that the two experiments are inconsistent. Note, however, that the S1–S2
and ntree-nametbl differences are not significant in either experiment. The fact that
the results are not significant shows that neither the program nor the session (with
the possible exception of a fatigue effect) has any effect on OutScope fault detection
effectiveness, which makes sense. This strengthens the plausibility of OutScope fault
detection depending exclusively on the expertise of the experimental subjects, as
specified in Section 4.1.2.
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Fig. 8 Estimated marginals means for Session/Program at UPM and ESPEL—InScope

4.2.2 Dif ferences Regarding the Group Factor

The between-group differences at ESPEL and UPM cannot be tabulated and
plotted as above, because they are too profound. Taking into account the statistical
significance of the results, however, we can compare the two experiments as shown
in Table 18.

(A) InScope Response Variable The results of the experiments at both UPM and
ESPEL are statistically significant for the group factor. The analysis suggests
that ESPEL results may be due to either a carryover effect or an imbalance in
experience in C programming and testing technique use across experimental
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Fig. 9 Estimated marginals means for session/program at UPM and ESPEL—OutScope

groups. At UPM, we do not know whether or not the experimental groups
are balanced (the original experimenters do not provide this information).
Additionally, the original report (Juristo et al. 2013) indicates that there was
no carryover.

Table 18 UPM-ESPEL
comparison—group factor

Response H0

Variable Upm Espel

InScope Reject Reject
OutScope Reject Accept
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We take the view that the between-group imbalance has not had a decisive
impact. The imbalance between experimental groups at ESPEL should show
up consistently across the InScope and OutScope faults. However, this is not
the result that we observed, as the between-group difference for OutScope
faults is not significant (and, besides, is different to the pattern for InScope
faults).
In our view, the carryover effect cannot be ruled out. This opinion is based on
two observations:

– The analysis of the technique and session/program factors at both ESPEL
and UPM appears to suggest that OutScope fault detection depends exclu-
sively on the experimental subjects, that is, on their knowledge, experience,
etc. If this were the case, we should not observe any carryover effect for
OutScope faults in the replication, as equivalence partitioning and branch
testing have no influence on OutScope fault detection. This would not
apply to InScope faults, and it would make sense if we were to observe
a carryover effect.

– Nonstatistically, using EP first appears to improve the effectiveness of
the techniques applied subsequently in both experiments (groups EP-CR-
BT and EP-BT-CR in the original experiment and group EP-BT in the
replication appear to be more effective).

Small sample effects offer a possible explanation, which does not support the
carryover effect, for the significant differences that show up with respect to
the group factor. The original experiment had 46 experimental subjects, so the
number of subjects per group is 46/6 � 8. At ESPEL, the number of subjects
per group is 23/2 � 12. With so few subjects per group, the significant effects
may be a product of chance.
We take the view that the small sample effects can add noise to the data analy-
sis (that is, cause some groups to exhibit significant differences from others
purely by chance), but this does not fully explain the results. Note that the
small sample effect should act consistently across InScope andOutScope faults,
which is not the case. At UPM, three groups exhibit significant differences
with respect to InScope faults, whereas only one of the groups has significant
differences with respect to OutScope faults (which could quite possibly be a
small sample effect). At ESPEL, the differences are significant for InScope but
not for OutScope faults. Consequently, there may well be a carryover effect
with respect to InScope faults.
Unfortunately, the carryover hypothesis is rather speculative. The groups at
ESPEL and UPM are not directly compatible; hence all inferences are based
on indirect evidence. Consequently, more replications need to be conducted to
confirm or reject the existence of a carryover effect.

(B) OutScope Response VariableWe have been obliged to explain all our findings
with respect to the OutScope variable in the analysis of the InScope response
variable. On this ground, we will merely state our conclusions at this point:

– We ascribe the existence of significant differences with respect to the group
factor for OutScope faults to a small sample effect.

– It appears from the analysis of the technique and session/program factors
that subjects draw on their own expertise to detect OutScope faults. On
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this ground, there should be no carryover effect (which, basically, is the end
result of a relationship between testing techniques and cannot, therefore,
exist unless they have a bearing on the OutScope response variable).

5 Conclusions and Lessons Learned Across Studies

5.1 Conclusions

Comparing non-identical replications is a complex issue. The changes caused by
eliminating one of the technique factor levels on logistic grounds (insufficient time
to run all the experimental sessions) have had a waterfall effect on the program and
session factors. Consequently, neither the sessions nor the groups are comparable in
every respect. Even so, the replication has helped to get a better understanding of
the influence of the factors under study:

– Firstly, we have confirmed that the equivalence partitioning technique is more
effective at detecting faults that are within its scope and branch testing is
more effective for faults outside its scope. A possible reason for this difference
of effectiveness in the case of the InScope variable is that subjects find the
branch testing technique harder to use or, at least, are better at applying the
equivalence partitioning technique. Regarding the difference in effectiveness for
the OutScope response variable, we hypothesize that the structural technique
is more effective because students use code review to round out the technique.
As they have access to the source code (not so for the functional technique),
they can inspect the code to gain a better understanding of the program. The
statistical results show that the measures of effectiveness were generally lower at
ESPEL than at UPM. This could be attributed to the influence of the setting. To
be precise, we believe that the extremely intensive teaching method applied in
training could have had an influence. Apart from the teaching method, another
consideration is trainer inexperience in teaching the software verification and
validation course, especially under the circumstances.

– Secondly, the results for the session/program and group factors with respect
to the OutScope response variable support the hypothesis that neither the
EP nor the BT technique really influence OutScope fault detection. In both
cases (session/program and group), the results were not significant in either the
original experiment or the replication.

– Thirdly, the existence of some sort of carryover effect for the InScope variable
appears to be confirmed. In this case, the problem is that the groups are formed
differently in the two experiments and are hence not comparable. Consequently,
further replications need to be conducted before we can state that this effect
really does exist.

The hardest thing to figure out was the influence of the session/program factor
with respect to the InScope variable. The original experimenters had concluded
that the program was responsible for the session/program effect on effectiveness at
UPM (remember that the two factors are confounded). The original experimenters
arrived at this conclusion after comparing the InScope and OutScope fault detection
effectiveness for session/program. This comparison suggested that the differences
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between cmdline, nametbl and ntree together offered a better explanation than the
differences across sessions S1, S2 and S3 for the resulting data.

However, the results at ESPEL for InScope have a completely opposite pattern
to UPM findings. Not only do the ESPEL and UPM patterns differ with respect to
the programs (ntree>nametbl at UPM, whereas nametbl>ntree at ESPEL), but the
differences at ESPEL are also statistically significant.

One of the changesmade to the replication with respect to the original experiment
was to reduce the number of sessions from three to two. This led to one of the
programs used in the original experiment (cmdline) being omitted. Under these
circumstances, it is hard to reach any sort of reliable conclusion. Our analysis
tends to ascribe the observed effects to the session rather than to the program.
However, there are other alternative explanations. The existence of some sort
technique/program interaction is a particularly convincing cause.

Figure 10 shows boxplots for the technique factor. In contrast to Fig. 6, they
have been further decomposed by session/program. Figure 10 is not easy to interpret
because there are several outliers, but the median for EP x nametbl is clearly much
greater than for the other combinations (BT x nametbl, etc.). The profile diagram
shown in Fig. 11 illustrates these values more clearly (Note that this diagram plots
means not medians). Neither the original experiment nor the replication (which
reuses the original analytical model for the sake of comparability) account for this
interaction, as a repeated-measures ANOVA cannot calculate this effect.

Irrespective of the analytical model used, the existence of such an interac-
tion would be compatible with the results for technique and program at ESPEL
and would explain why a carryover effect was observed. (Note that the tech-
nique/program interaction, that is, where a techniquemay bemore effective when ap-
plied to certain programs, is confounded with the group factor, and thus the statistical
analysis is unable to distinguish the two effect types.) A possible technique/program
effect does not explain all the findings, however. In particular, there is the question of

Fig. 10 Boxplot for the
interaction technique ×
session/program at
ESPEL—InScope
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Fig. 11 Profile diagram for the
technique × session/program
interaction at
ESPEL—InScope

why the EP-BT-CR andEP-CR-BT groups are so effective in the original experiment
when the program tested in the first session was cmdline and not nametbl, and all
the subjects participating in the experiments regarded cmdline as a program that is
hard to understand and test. In actual fact, all the above explanations are tentative.
As already mentioned, we will not be able to clearly understand the effects of the
technique and session/program factors unless further replications are conducted.

5.2 Lessons Learned

The replication that we have conducted is one of a long line of experiments. This
means that information and the experience gathered from multiple replications
conducted as part of this family is reasonably thorough, and, as we also had access to
the original experiment report, the replication could have been carried out without
any additional information.

With hindsight, however, we believe that we would have had very little prospect of
success if we had proceeded in this manner (as already mentioned, we had intensive
communication with the original experimenters). The likenesses between the two
experiments are noteworthy, but the differences are no less marked. We have been
able to trace these differences back to characteristics of the experimental setting (e.g.,
software verification and validation course intensiveness), but this was possible only
because relatively few changes were made to the replication. For example, we might
have ascribed the low effectiveness of the ESPEL subjects using the branch testing
technique to the fact that they were inexperienced at programming in C. But, UPM
subjects are generally not very experienced C programmers either and they are more
effective. Therefore, the low effectiveness is more likely to be due to the training
received, which does vary, and very much so, from ESPEL to UPM.
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With no more than the original experiment report and the experimental materials,
such a close coincidence appears to be very hard to achieve. The experimental
material did not describe training issues, such as mentioned above; nor did it detail
experiment execution or results measurement, for example. Had we not cooperated
with the original experimenters, especially during the early stages, the differences
between the original experiment and the replication would probably have beenmuch
larger. These differences (such as, for example, the above changes regarding training)
are also likely to have caused discrepancies in the results. A post-experimental
discussion with the original experimenters could show up design differences, but
would not be able to prevent any discrepancies caused by such changes. However,
these points were discussed at the pre-experimental meetings that we had with the
original experimenters.

As a corollary to the above, the experience of having replicated an experiment
previously conducted by other experimenters and, especially, the attempt at com-
paring the results of the two experiments, has shown that unless replications closely
resemble the original experiment it is impossible to ascribe (at least hypothetically)
consistent and inconsistent results to particular factors and parameters. For the
reasons discussed above, if the experimental settings are not alike, the differences
between the results can be attributed to virtually any aspect, making the replication
much less enlightening than it would otherwise be.

Obviously, merely replicating an experiment with a similar design does not
guarantee that the results can be definitely ascribed to a factor. On the one hand,
any experiment is subject to some error probability (α and β). On the other hand,
we do not know which aspects of a setting (that is, uncontrolled variables) are likely
to alter the effects of the factors. Consequently, even very similar replications can
return contradictory results.

We can reduce α and β error fairly simply by increasing the number of experi-
mental subjects. As the number of subjects increases, experimenters can gradually
lower the α and β values. In practice, however, the availability of experimental
subject is limited (for example, Sjøberg et al. 2005, report that the mean number
of experimental subjects per SE experiment is 48.6). In other words, we can at best
reckonwith enough subjects to assure normality and elude small sample effects (from
30 to 50 subjects) (Richy et al. 2004; Graham and Schafer 1999).

The second problem cannot be solved by running a single replication. The
unknown variables are, as their name indicates, inscrutable, and therefore their effect
cannot be estimated. Nevertheless, randomization is usually considered effective
(that is, cancels out the effects of uncontrolled variables) as of 30 subjects, which
is when a sample of a standard population is assumed to meet the normality
assumption.

The replication that we have conducted has both of the above characteristics. It
has 23 experimental subjects, which is lower than the average 48.6 subjects per SE
experiment reported by Sjøberg et al. (2005). However, as a result of the cross-
over design, those 23 subjects are equivalent to 23 × 2 = 46 experimental units. In
the case of repeated-measures designs, it is the number of experimental units, not
subjects, that influences the α and β values. Sjøberg et al. (2005) do not report
the number of experimental units per SE experiment. However, the number is
unlikely to be much greater than 48.6, because within-subjects is not the most
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common experimental design in SE. Therefore, this replication can be considered
an “average” SE experiment.

Even so, we have observed inconsistencies with the original experiment despite
having kept all parameters and factors reasonably well under control. We have
hypothesized that such inconsistencies can be put down to certain causes (as in
the case of the differences in the results with respect to session/program), but this
has only been possible because the experiments are quite alike. If there were more
differences between the experiments, any such, even hypothetical, attribution would
be out of the question.

These may not, of course, be the real causes of the inconsistencies. Literal
replications (that is, replications that closely resemble the original experiment) are
just a starting point. We will in any case have to run differentiated replications in
order to more generally explore all the factors that potentially have an effect.

Finally, we have found that the preparation of the replication accounts for a much
larger workload than the experimental sessions. Gaining a detailed understanding
of the original experiment, plus the initial training and processing of the forms sub-
mitted by subjects, proved to be much more time-consuming than the experimental
sessions. In fact, the session workload was comparatively insignificant.

Briefly the lessons learned were:

– Support from the original experimenters is important, during the early replica-
tion preparation phases at least, in order to supplement the information available
in reports and materials. It is vital to have as much information as possible to
ensure that the original experiment and replication are comparable.

– The replication must be as like the original experiment as possible in order to be
able to ascribe the detected differences (or similarities) to specific variables.

– The highest experiment workload is spent not on the experimental sessions per
se but on the preparation of the experiment and analysis of the information
gathered from subjects.

5.3 Experiences with Reporting Guidelines

Apart from reporting the replication, we have, as part of this research, tested the
guidelines for reporting replications proposed by Carver (2010). Generally, the
guidelines have proved to be really useful, especially as regards the description of the
replication in terms of its differences to the original experiment. However, there are
some points that we found not to be fully satisfactory and think should be improved:

– The granularity with which the original experiment should be described is
unclear. On the one hand, the original experiment can be assumed to have
been published, meaning that a brief description would do the job (interested
readers could always refer to the original publication). But, on the other hand,
the description should be detailed enough for readers to be able to understand
the impact of the changes made to the replication. The guidelines should be
clearer in this respect.

– Again regarding the reporting of the original experiment, our impression is that
the section contents are very unbalanced. The research questions section has very
little content, whereas the experimental design section is packed out. Addition-
ally, it is unclear where the hypotheses should be defined. We have moved some
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elements (hypotheses, factors and response variables) to the research questions
section, but we consider this procedure to be unsatisfactory.

– In the case of literal replications, it is unclear which parts of the experiment or
replication to report. In the replication that we have run, for example, we use
only two of the three main factor levels of the original experiment. Should we
report the results concerning the third level of the original experiment? On the
one hand, it appears that we should, otherwise the report would be incomplete.
But, on the other hand, the third level is of no use for comparing the original
experiment and the replication. Also, readers could always refer to the original
experiment report to look up any information about this third factor.

– There is no separate section for discussing the results of the replication. The
replication results should be discussed separately before identifying the similari-
ties and differences between experiments.We have added a separate section, but
we think that the guidelines should take this point into account.

5.4 Future Work

The replication that we have run has essentially confirmed the effects observed in
the original experiment. However, there are some effects, such as differences of
effectiveness associated with sessions/programs or carryover effects, which we have
still not been able to positively ascribe to specific variables. Our short-term goal is to
continue replicating the UPM experiment, altering the setting as little as possible in
order to determine beyond all doubt which variables produce which effects. Once we
have a good understanding of how the (equivalence partitioning and branch testing)
testing techniques behave, we will be able to run differentiated replications that
explore different settings or populations (e.g., experienced professionals or industrial
settings).
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Appendix

Appendix A: Descriptive Statistics

Table 19 Descriptive statistics
InScope variable

Technique N Mean Std. dev.

Branch testing 23 31.883 25.581
Equivalence partitioning 23 44.204 29.988

Table 20 Descriptive statistics
OutScope variable

Technique N Mean Std. dev.

Branch testing 23 27.536 32.803
Equivalence partitioning 23 11.593 16.231
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Appendix B: Survey’s Data

Table 21 Survey’s data

Q1: Question 1
Q2: Question 2
Q3: Question 3
Value 1: None
Value 2: I know the theory
Value 3: I have done short
exercises
Value 4: Practical assignments
Value 5: Development projects

Subject Group Q1 Q2 Q3

S1 G2 3 3 2
S2 G1 NA NA NA
S3 G1 5 4 4
S4 G2 5 3 4
S5 G2 4 2 2
S6 G2 5 2 2
S7 G1 4 2 2
S8 G1 5 4 3
S9 G1 5 5 4
S10 G2 5 4 2
S11 G2 4 4 1
S12 G1 4 4 4
S13 G2 NA NA NA
S14 G1 4 5 4
S15 G1 3 4 1
S16 G1 4 3 3
S17 G1 4 4 1
S18 G2 4 3 3
S19 G2 5 5 4
S20 G2 4 5 2
S21 G1 5 3 2
S22 G1 5 4 4
S23 G2 4 4 2

Appendix C: Replication’s Raw Data

Table 22 Replication’s raw data

S G T P Se Vis. for EP Vis. for BT In Out

F1 F2 F3 F4 F5 F6 (%) (%)

1 2 EP Na 1 1 1 66.7 0.0
1 2 BT Nt 2 1 33.3 0.0
2 1 BT Na 1 1 0.0 33.3
2 1 EP Nt 2 1 33.3 0.0
3 1 BT Na 1 0.0 0.0
3 1 EP Nt 2 1 33.3 0.0
4 2 EP Na 1 1 33.3 0.0
4 2 BT Nt 2 0.0 0.0
5 2 EP Na 1 1 1 66.7 0.0
5 2 BT Nt 2 0.0 0.0
6 2 EP Na 1 1 1 33.3 33.3
6 2 BT Nt 2 0.0 0.0
7 1 BT Na 1 0.0 0.0
7 1 EP Nt 2 1 1 1 66.7 33.3
8 1 BT Na 1 0.0 0.0
8 1 EP Nt 2 0.0 0.0
9 2 EP Na 1 1 1 66.7 0.0



414 Empir Software Eng (2014) 19:378–417

Table 22 (continued)

S G T P Se Vis. for EP Vis. for BT In Out

F1 F2 F3 F4 F5 F6 (%) (%)

9 2 BT Nt 2 1 1 66.7 0.0
10 1 BT Na 1 0.0 0.0
10 1 EP Nt 2 0.0 0.0
11 2 EP Na 1 1 1 66.7 0.0
11 2 BT Nt 2 1 33.3 0.0
12 1 BT Na 1 1 1 1 0.0 100.0
12 1 EP Nt 2 1 1 33.3 33.3
13 2 EP Na 1 0.0 0.0
13 2 BT Nt 2 1 1 1 33.3 66.7
14 1 BT Na 1 0.0 0.0
14 1 EP Nt 2 0.0 0.0
15 1 BT Na 1 1 0.0 33.3
15 1 EP Nt 2 1 0.0 33.3
16 1 BT Na 1 1 1 33.3 33.3
16 1 EP Nt 2 1 1 33.3 33.3
17 1 BT Na 1 1 0.0 33.3
17 1 EP Nt 2 0.0 0.0
18 2 EP Na 1 0.0 0.0
18 2 BT Nt 2 1 1 66.7 0.0
19 2 EP Na 1 1 1 66.7 0.0
19 2 BT Nt 2 0.0 0.0
20 1 BT Na 1 0.0 0.0
20 1 EP Nt 2 1 0.0 33.3
21 2 EP Na 1 1 1 1 1 100.0 33.3
21 2 BT Nt 2 1 1 1 33.3 66.7
22 1 BT Na 1 0.0 0.0
22 1 EP Nt 2 0.0 0.0
23 2 EP Na 1 1 1 66.7 0.0
23 2 BT Nt 2 1 33.3 0.0

S: Subject,G: Group
T: Technique
(EP: Equivalence Partitioning, BT: Branch Testing)
P: Program (Na: Nametbl; Nt: Ntree)
Se: Session, F1–F6: Faults, Vis.: Visible
In: InScope, Out: OutScope (Response Variables)
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Abstract This paper presents results from an industrial study that applied input
space partitioning and semi-automated requirements modeling to large-scale indus-
trial software, specifically financial calculation engines. Calculation engines are used
in financial service applications such as banking, mortgage, insurance, and trading to
compute complex, multi-conditional formulas to make high risk financial decisions.
They form the heart of financial applications, and can cause severe economic harm
if incorrect. Controllability and observability of these calculation engines are low,
so robust and sophisticated test methods are needed to ensure the results are valid.
However, the industry norm is to use pure human-based, requirements-driven test
design, usually with very little automation. The Federal Home Loan Mortgage
Corporation (FHLMC), commonly known as Freddie Mac, concerned that these test
design techniques may lead to ineffective and inefficient testing, partnered with a
university to use high quality, sophisticated test design on several ongoing projects.
The goal was to determine if such test design can be cost-effective on this type of
critical software. In this study, input space partitioning, along with automation, were
applied with the help of several special-purpose tools to validate the effectiveness
of input space partitioning. Results showed that these techniques were far more
effective (finding more software faults) and more efficient (requiring fewer tests and
less labor), and the managers reported that the testing cycle was reduced from five
human days to 0.5. This study convinced upper management to begin infusing this
approach into other software development projects.
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1 Introduction

A test criterion is a set of engineering rules that define specific requirements on
designing tests, such as cover every branch, or ensuring that every variable definition
reaches a use. Although researchers and academics have been publishing test criteria
for years, the authors have had difficulty convincing practitioners that the cost of
investing in criteria-based test design will lead to better software with acceptable cost.
This is a classic return on investment concern: Will the benefits of investing in new
technology outweigh the costs? These doubts were expressed by a project manager
to a test manager at a large financial services company, the Federal Home Loan
Mortgage Corporation (FHLMC), commonly known as Freddie Mac. In response,
the test manager proposed to partner with a researcher at a university to choose
appropriate test criteria, build support test automation tools, and compare the results
of applying test criteria with the results of Freddie Mac’s standard test process
(manual requirements-based testing). The research question has three simple parts:
(1) Can input space partitioning and semi-automated requirements modeling succeed
in a real industrial setting with real testers? (2) Can such an approach result in more
fault detection during testing, and therefore better software? (3) Can real testers
accept this approach for practical use?

Results from the resulting industrial study on four separate software systems are
reported here. The project has been very successful. In all four systems, the criteria-
based approach yielded fewer tests that found more defects. All four systems have
reported zero defects since release. Additionally, the test managers reported that the
testing cycle was reduced from five human days to 0.5.

This paper reports what we choose to call an “industrial study,” rather than a
controlled experiment. The study was carried out at an industrial site and we had to
play by industrial rules. This is both a strength of the paper and a weakness. This
is a strength because this study shows that input space partitioning (ISP) (Ammann
and Offutt 2008; Grindal et al. 2005) can be used effectively, with a positive return
on investment, in a realistic setting as opposed to a laboratory. But the context also
creates a weakness because we were not able to do all the things we would have
liked to do. This is common in industrial studies, and we believe the field needs more
industrial studies, not fewer.

Financial services like banking, mortgage, and insurance contain subsystems
that involve complex calculations. Pricing loans, amortizing loans, asset valuations,
accounting rules, interest calculations, pension calculations, and generating insurance
quotes are common calculations used by these applications. Calculations embedded
into these systems differ in their calculation algorithms. In a particular application,
different calculators may need to perform multiple calculations to achieve the
business’s objective. These calculators together are called the calculation engine. In
most cases, several calculations need to be performed in sequence or in parallel to get
the final output. The logic for these calculations usually resides deep in the business
layer of software, which means that system-level inputs must travel through several
layers of software and numerous intermediate computations before reaching the
financial calculations being tested. This makes it difficult for system testers to control
the values of the inputs to the actual financial calculations, that is, controllability
(Freedman 1991) is low. Likewise, the results of the financial calculations are
processed through several layers of software, making it difficult to see the direct
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results of the individual financial calculations. That is, observability (Freedman 1991)
is also low. Software that exhibits low controllability and observability is notoriously
hard to effectively evaluate during system testing (Freedman 1991). (These concepts
are defined more carefully in the next subsection.)

Financial models are a common form of calculation engine. Financial modeling
is the process by which an organization constructs a financial representation of
some or all of its financial aspects. The model is built by calculations, and then
recommendations are made by using the model. The model may also summarize
particular events for the user and provide direction regarding possible actions
or alternatives.

Financial models can be constructed by computer software or with a pen and
paper. What is most important, however, is not the kind of technology used, but the
underlying logic that encompasses the model. A model, for example, can summarize
investment management returns, such as the Sortino ratio (Sortino and Price 1994),
or it may help estimate market direction, such as the Federal Reserve model (Lander
et al. 1997).

It is essential to test financial models thoroughly as they are business critical
and may cause enormous harm to the business if wrong. The common system test
strategy is to derive test requirements from black box testing techniques such as
boundary value analysis, and error guessing. Unfortunately, these are not always
effective. Effective test methods need to be used to overcome the calculations’ low
observability and controllability.

This paper presents an industrial study. Input space partitioning was used to
test several major pieces of functionality in large financial calculation engines at a
major financial services company (Freddie Mac). As far as we know, this is the first
industrial study using input space partitioning. The first author is a test manager
in charge of testing these calculation engines and performed this study under the
direction of the second author. Section 2 describes some of the key ideas for how
calculation engines work. Section 3 describes the testing approaches that were used
in this study. Section 4 presents the software systems that were tested and Section 5
gives the testing results. Section 6 provides conclusions and recommendations.

2 Characteristics of Calculation Engines

Calculation logic is implemented in the business layer of multi-layer software systems
(usually deployed on local web servers). All calculations are performed on the server;
the client is abstracted from the processing. Therefore the user does not observe
any processing behind the graphical user interface. For example, a user supplies
inputs for an insurance quote and the application generates the insurance quote
by performing various calculations on the server. Then the user enters different
characteristics of the borrower and the application generates the interest rate by
applying different rules on the server. The application takes different inputs from
taxpayers and generates the tax owed by performing other calculations on the server.
Calculation engines feature some characteristics of component-based applications,
reducing their testability.

In general terms, testability refers to how hard it is to test a software compo-
nent (Ammann and Offutt 2008; Freedman 1991; Voas 1992). Testability is largely
influenced by two aspects of software, controllability and observability. Ammann
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and Offutt (2008) define software observability and controllability as follows. Soft-
ware observability is how easy it is to observe the behavior of a program in terms of its
outputs, effects on the environment, and other hardware and software components.
Software controllability is how easy it is to provide a program with the needed inputs
in terms of values, operations, and behaviors. Because calculations are performed
on the server, many inputs are taken from other software components as shared
through persistent data on disk or in-memory objects, and calculations often depend
on the time of the day or day of the month, both observability and controllability
are quite low for this software. Problems with observability and controllability are
usually addressed by test interfaces or test drivers, which let testers assign specific
values to variables during execution, and view values at intermediate steps. Freddie
Mac had never used test interfaces before this project.

2.1 Specification Formats for Calculation Engines

Requirements for calculation engines are specified in various forms and in combi-
nations of plain English, use cases, mathematical expressions, logical expressions,
business rules, procedural design, and mathematical formulas. These requirements
are very complicated for both developers and testers.

Defects in calculation engines not only lead to interruptions, but also can result
in legal battles and large financial liabilities. These incidents create headlines in
newspapers, causing severe damage to the corporations’ reputations. Therefore,
strict IT controls are put into place around these applications, and they are subjected
to regular auditing.

Although users most commonly see results of financial calculation engines with
two digits of decimal precision (dollars and pennies in the USA), most calculations
are performed with floating point arithmetic for greater precision. This brings up the
possibility of errors in truncation and rounding. Many applications maintain constant
word size through the basic arithmetic operations. Multiplication is the biggest
concern as multiplying two N-bit data items yields a 2N-bit product, so truncation
limits must be defined in the specifications. Therefore tests must be designed to
evaluate precision, truncation, and rounding of the calculated values.

2.2 Characteristics of Design and Implementation of Calculation Engines

Calculation engines have several unusual characteristics that complicate test design,
test automation, and test execution. Values such as interest rates, S&P index,
NYMEX index, etc. change constantly during a business day depending on market
factors. The calculations use some of these values in their computations. These values
are updated constantly into tables called pricing grids. Calculation systems then pull
the current values when needed. When designing tests, this factor can be abstracted
or discounted, as this need not be tested every time.

Attributes for calculations are often received from external systems (upstream).
The systems under test process the calculations and may send the data to external
(downstream) systems that consume the outcomes. For example, Asset valuation
calculations receive inputs from Sourcing systems and pass the data to the Subledger
and General Ledger downstream systems, where accounting calculations (principles)
are applied and the final result will be reflected in financial reports at the end of
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the period. A common problem is that the requirements may not clearly specify the
source of the data for calculations. Thus, understanding the technical specifications
is essential–especially in determining the preconditions and designing pref ix values
(values needed to put the software into the correct state to run the test values).

Understanding the events and conditions that determine the flow in the calcu-
lations also helps design effective tests. For example, the Interest Rate type (Fixed,
ARM, or Balloon) determines which path to follow. Calculations take different paths
based on these inputs.

Algorithms for amortization, pricing, insurance quotations, asset valuations, and
accounting principles are standard. For example, amortization methods could be
based on the diminishing balance or flat rate over a preset duration. Knowing how
these algorithms work is necessary to determine the expected outputs for the tests.
For example, MS-Excel has standard amortization functions, which can be used as a
calculation simulator instead of building simulator programs.

In almost all the applications, most calculations are implemented either as a batch
process or an online transaction that occurs in the business layer. Understanding the
architecture helps isolate the testable requirements from non-testable requirements.

Even though the entities that participate in the calculations have many important
attributes, it is common for only a few to be involved in the calculations. For
example, the loan pricing calculation, Loan and Master Commitment, have 140 and 35
attributes that are available to the calculations, but only seven are actually used in the
calculations. Identifying the influential attributes, and their constraints, is necessary
to build effective tests. The acceptable values for each attribute and their constraints
are defined in the form of business rules. When tests are built, test inputs need to
include values for the remaining attributes to make a test case executable.

Calculation engines send and receive values between each other. In many cases,
debugging the incorrect output is tedious as it involves checking all intermediate
values in the flow. The same set of inputs may yield different outputs when the
calculations are performed at different times. The reasons could be: (a) input values
are interpreted differently, (b) interest values could be changed in different time
periods, (c) intermediate values could have changed, (d) business rules would have
changed in the due course, etc. The systems do not store the intermediate values, but
intermediate values are essential in diagnosing problems.

Applications that involve these calculations often need to be tested for different
business cycles; daily, monthly, quarterly, and annually. Therefore, the same tests
may need to be executed more than once.

3 Test Approach

As said in Section 1, calculation engines have low controllability and observability,
which makes it more difficult to design and automate complete tests. Depending on
the software, the level of testing, and the source of the tests, the tester may need
to supply other inputs to the software to affect controllability and observability.
Two common practical problems associated with software testing are how to provide
the right values to the software, and observing details of the software’s behavior.
Ammann and Offutt (2008) use these two ideas to refine the definition of a test
case as follows. A pref ix value is any input necessary to put the software into the
appropriate state to receive the test case values (related to controllability). A postf ix
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value is any input that is needed after the test case values to terminate the program
or see the output (related to observability).

A test case is the combination of all these components (test case values, prefix
values, and postfix values), plus expected results. This paper uses “test case” to refer
to both the complete test case and test case values.

This study tested the calculation engines using two different methods: input space
partitioning and requirements modeling. This was a project decision made by the test
manager at the beginning of the project.

3.1 Input Space Partitioning

Input space partitioning (ISP) divides an input space into different partitions and
each partition consists of different blocks (Ammann and Offutt 2008; Grindal et al.
2005). ISP can be viewed as defining ways to divide the input space according to
test requirements. The input domain is defined in terms of possible values that the
input parameters can have. The input domain is then partitioned into regions that
are assumed to contain equally useful values for testing.

Consider a partition q over a domain D. The partition q defines the set of
equivalence classes, called blocks Bq. The blocks are pairwise disjoint, that is:

bi ∩ bj = ∅, i �= j; bi,bj ∈ Bq

and together the blocks cover the domain D, that is:
⋃

b∈Bq

b = D

ISP started with the category partition method (Ostrand and Balcer 1988; Ostrand
et al. 1986). Category partition was defined to have six manual steps to identify input
space partitions and convert them to test cases.

1. Identify functionalities, called testable functions, which can be tested separately.
2. For each testable function, identify the explicit and implicit variables that can

affect its behavior.
3. For each testable function, identify characteristics or categories that, in the

judgment of the test engineer, are important factors to consider in testing the
function. This is the most creative step in this method whose result will vary
depending on the expertise of the test engineer.

4. Choose a partition, or set of blocks, for each characteristic. Each block represents
a set of values on which the test engineer expects the software to behave
similarly. Well-designed characteristics often lead to straightforward partitions.

5. Choose a test criterion and generate the test requirements. Each partition con-
tributes exactly one block to a given test requirement.

6. Refine each test requirement into a test case by choosing appropriate values for
the explicit and implicit variables.

This project uses several ISP criteria: base choice, multiple base choice,
and pairwise.

The base choice (BC) criterion emphasizes the most “important” values. A base
choice block is selected for each partition, and a base test is formed by using any
value from each base choice for each partition. Subsequent tests are chosen by
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holding all but one base choice constant and using each non-base choice in each other
parameter. All values in a block are treated identically, so the subsequent discussion
sometimes uses the term “block” to refer to the specific value from the block that is
used in tests.

For example, if there are three partitions with blocks [A, B], [1, 2, 3], and [x,
y], suppose base choice blocks are “A,” “1” and “x.” Then the base choice test is
(A, 1, x), and the following tests would be needed:

(B, 1, x)
(A, 2, x)
(A, 3, x)
(A, 1, y)

A test suite that satisfies BC will have one base test, plus one test for each
remaining block for each partition. Base choice blocks can be the simplest, the
smallest, the first in some ordering, or the most likely from an end-user point of view.
Combining values from more than one invalid block is considered to be less useful
because the software often recognizes the value from one block and then negative
effects of the others are masked. Which blocks are chosen for the base choices
becomes a crucial test design decision. It is important to document the strategy that
was used so that further testing can reevaluate that decision.

Sometimes it is difficult to choose just one block as a base choice. The multiple
base choices (MBC) criterion requires at least one, but allows more than one, base
choice block for each partition. Base tests are formed by using each base choice
for each partition at least once. Subsequent tests are chosen by holding all but one
base choice constant for each base test and using each non-base choice in each
other parameter.

In the pairwise (PW) criterion, a value from every block for each partition must
be combined with a value from every block for every other partition.

For example, if the model has three partitions with blocks [A, B], [1, 2, 3], and
[x, y], then PW will need tests to cover the following combinations:

(A, 1) (B, 1) (1, x)
(A, 2) (B, 2) (1, y)
(A, 3) (B, 3) (2, x)
(A, x) (B, x) (2, y)
(A, y) (B, y) (3, x)

(3, y)

Pairwise testing allows the same test case to cover more than one unique pair of
values. So the above combinations can be combined in several ways, including:

(A, 1, x) (B, 1, y)
(A, 2, x) (B, 2, y)
(A, 3, x) (B, 3, y)
(A, ∼, y) (B, ∼, x)

The tests with “∼” mean that any block can be used. A test set that satisfies PW
testing is guaranteed to pair a value from each block with a value from each other
block. In general, pairwise testing does not subsume base choice testing.
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3.2 Requirements Modeling

In Freddie Mac’s standard testing process, testers develop tests from requirements
by informally considering the behavior of the software and guessing what might
go wrong. No test criterion is used, no model of the input space or the software is
constructed, and there is no notion of coverage. Most tests are not designed before
the software is tested; the testers read the requirements, then sit down in front of
the software and started running it. Beizer (1990) and Myers (1979) and others
extensively discussed this type of behavioral testing from requirements, which allows
domain knowledge to be directly used in test design.

As part of this project, we developed a special purpose automated tool called
the Fusion Test Modeler (FTM), which helped use the requirements for calculation
engines to create a model for generating tests case (a test model). FTM also provided
traceability from the functional requirements to the test requirements to the tests.

The requirements of the calculation engines are expressed in a mixture of event
sequences, action sequences, business rules, use cases, plain text in English, logical
expressions, and mathematical expressions. For example, pricing a loan or a contract
occurs when some events occur, such as creating the loan, changing the time period,
changing the interest rates, and/or changing the fee rates. Amortization calculations
depend on the time period of the loan and characteristics of the loan, such as ARM or
fixed. Asset valuation triggers a different set of calculations based on the Asset type,
e.g., whole loans, swaps, or bonds. Some specifications are defined in the form of
pseudo-code and procedural design, especially for financial models, which are often
bought as third-party tools and integrated into the Freddie Mac systems. For others,
complex calculations are embedded in the sequence of steps in use cases.

The calculation requirements are naturally hierarchical, starting with the overall
result needed at the top, then subcalculations, down through individual values at
lower levels in the hierarchy. Thus the calculation requirements were modeled for
testing as a tree. The test models were extended and decomposed to trace different
paths in the models. A typical test requirement is met by visiting a particular node or
edge or by touring a particular path. These decomposed paths simplify the complex
or obscure behaviors of the calculation engines. Each path in the test models can be
refined to a unique test case mapping to the test requirements.

Figure 1 shows the high level process used to test the calculation engines using the
modeling technique. The first and second steps were crucial in this process to model
the requirements. The Fusion Test Modeler helped model the requirements. The
second step derived the test scenarios from the model. FTM automatically generated
these test scenarios. Steps 4, 5, and 8 were automated with the help of other tools.

The test modeling process followed 10 steps, as adapted from Beizer (1990).

1. Identify the testable functions (by hand).
2. Examine the requirements and analyze them for operationally satisfactory

completeness and self-consistency (by hand).
3. Confirm that the specification correctly reflects the requirements, and correct

the specification if it does not (by hand).
4. Rewrite the specification as a sequence of short sentences (using FTM).
5. Model the specifications using FTM.
6. Verify the test model (by hand).
7. Select the test paths (automated by FTM).
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Fig. 1 Modeling process to test calculation engines

8. Sensitize the selected test paths; that is, design input values to cause the software
to do the equivalent of traversing the selected paths (by hand).

9. Record the expected outcome for each test. Expected results are specified
in FTM.

10. Confirm the path (automated by FTM). The prime path coverage criterion
(Ammann et al. 2003) is applied to traverse the model’s paths.

The algorithms in calculation engines are specified in a variety of formats. Re-
quirements are translated into semi-formal functional specifications. Specifications
can be described as finite state machines, state-transition diagrams, control flows,
process models, data flows, etc. Financial models are sometimes in the form of the
source code, usually when systems are to be built to replicate existing financial mod-
els, so the source code becomes the specifications. Sometimes algorithms defined in
Visual Basic may be re-implemented in Java, so the Visual Basic version is used as
the specification. They are also expressed in logical expressions, use cases, program
structures, sequence of events, and sequence of actions.

The tree structure was also used to model logical expressions for testing, as
extracted from if and case statements, and for and while loops. Multiple-clause
predicates were mapped onto a tree structure so that FTM could be used.

UML use cases are also used to express and clarify software requirements. They
describe sequences of actions that software performs by expressing the workflow
of a computer application. They are often created early and are then used to start
test design early. Use cases are usually described textually, but can be expressed
as graphs. In this project we expressed use cases as graphs, then selected paths to
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embed in trees for use by FTM. These graphs can be viewed as transaction f lows
(Beizer 1990). Activity diagrams can also be used to express transaction flows. FTM
can be used to model a variety of things, including state behavior, returning values,
and computations.

3.3 The Fusion Test Modeler

FTM was developed to meet seven essential needs.

1. It provides traceability from the requirements to the test models to the tests.
2. It helps testers satisfy internal audit requirements. The testing process must

be transparent, the test cases must be well documented, and changes should
be applied in a controlled manner. FTM allows test analysts to keep track of
changes, and also captures who executed the tests and when they were executed.
Models are saved in XML files that are under configuration management.

3. It allows multiple test specification formats.
4. It must be easy to learn with a minimum of training. The modeling technique

chosen is simple so that the business community, testers, and analysts from non-
engineering backgrounds can learn and model the requirements quickly. They
can also analyze the requirements with the help of models.

5. FTM must preserve the mental models used to create the test requirements.
Testers often build mental models and then destroy them once they understand
the requirements. FTM allows users to build rough drafts of the test models and
preserve them for future analysis. The tool helps the users evolve their analysis
into a model that captures the testable requirements. It also supports impact
analysis when changes need to be made to the software, and helps transition
knowledge when new team members arrive.

6. It must complement existing tools used to manage testing.
7. FTM must satisfy graph-based coverage criteria (in this case, all paths in

the tree).

FTM stores test requirements in a spreadsheet, and uses Java utilities to read
and generate the base choice and multiple base choice test requirements from the
spreadsheet. The pairwise test requirements were generated by a PERL program
(Bach 2005). Values were obtained from upstream software components and by
hand. A simulator, written as Excel functions, was used to generate the expected
results. A disadvantage of simulators is that it is difficult to judge whether the output
of the simulator or the output of the system-under-test is correct. Differences must be
resolved by a domain expert. A second disadvantage is of the same error appearing
in both the simulator and the system-under-test.

Rational TestManager stores test data in data pools. A data-driven testing tech-
nique was applied to automatically enter the test data into the system by the tool.
Logic validation was not added to the automation scripts to maximize the processing
time of the data entry. Automation scripts were just simulated to enter the data
and were scheduled on different machines to enter data in parallel. When the
test data was input to the system, calculation-triggering events were identified and
automation scripts trigger the calculations. Events to trigger the calculations were
also incorporated into the script, so that every time the event triggers, the calculation
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engine was activated and performs calculations at the business layer, storing the
results in the database.

All actual results were stored in a database. In general, the final state of the actual
results generated by the calculation engines were stored in the database, and internal
states may be logged into execution logs for later debugging. It may be required to
refer to the execution logs for the internal states and values of the actual results
if they deviate from the expected results. One of our application study used nine
calculators and each calculator received the inputs from one or more of the other
calculators. We suggested to the programmers that they generate the execution logs
with the intermediate values of the calculation variables to help debug incorrect
expected output. A Java utility was written to search all the intermediate states of
calculation variables. The program scanned 10 MB of the execution logs in about 10
seconds and wrote the expected intermediate outputs into an Excel spreadsheet.

Financial calculations often produce hundreds of outputs that need to be com-
pared frequently, thus an automated comparison tool was developed to examine and
compare the backend results with the spreadsheet. The comparator compares the
results, showing the differences for failures and successes for passes. The comparator
compares the left-hand side and right-hand side of the results in different forms:
spreadsheet to spreadsheet, spreadsheet to database, and spreadsheet to text file.

Sometimes the actual results (intermediate) are obtained from the program
execution logs. These logs store values for intermediate results and final results are
stored in the database. The comparator searches for the desired text in the execution
logs and required fields in the database. The comparator tool discards unneeded
text strings before making comparisons of the output results. Actual and expected
results may not always be exactly the same due to roundoff, so the expected outputs
include tolerance limits. For example, a variation of at most one dollar in a million is
acceptable if the variation is caused due to drifts in floating point accuracy.

4 Software Systems Studied

This paper presents results from testing four separate industrial systems. They are
described here, and results for each are given in the next section. All are complicated
financial calculation engines that perform operations that may not be familiar to
the readers. More details are in Alluri’s MS thesis (Alluri 2008). The test criteria
were not applied in a comparative manner, but in a complementary manner, so
for example, pairwise testing was used for particularly complicated subsystems and
to handle conflicts between partitions. The specific test criteria used depended on
characteristics of the systems. This paper shows details of the test designs for the first
software system, but omits those details for the other systems to save space. We have
not been able to find other industrial studies using input space partitioning.

4.1 Contract Pricing

Contract pricing prices contracts when contracts are created in the Loan Purchase
Contract (LPC) subsystem and reprices the contracts when contracts are modified
or upon user requests. Two types of contracts are cash contracts and swap contracts.
This system tested swap contracts. The requirements for the pricing calculations of
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swap contracts are specified in the form of use cases. This use case calculates the swap
GFee, Buyup max, Buydown max, Total adjusted GFee for fixed rate, Guarantor, and
Multilender ARM swap contracts.

This project tested the software in two stages. The first stage tested the larger
import contracts feature. The second stage tested a smaller number of contract
attributes that were isolated to test just the contract pricing feature. Freddie Mac’s
selling system consists of different subsystems: LPC, NCM, TPA, Pooling, Pricing,
and OIM. Each subsystem contains multiple features and is designed to abstract their
functionalities from the others. The contract pricing feature (stage 2) receives inputs
from the import contracts feature (stage 1) of the LPC subsystem that facilitates
importing the contracts. The import contracts feature had almost 200 business rules,
and stage 1 testing resulted in 92 base choice and 207 pairwise tests.1 The stage 2
testing resulted in 15 base choice, 30 multiple base choice, 23 pairwise tests, and 27
requirements modeling tests. For space reasons, this paper gives more test details for
the stage 2 testing than stage 1.

In the first stage (important contracts), 29 attributes were identified and used to
create 29 partitions for input space partitioning. The blocks for each partition were
based on the system specifications and are shown in Table 1. Tests were designed
using the base choice coverage criterion and constraints among the partitions were
validated using the pairwise coverage criterion.

In the second stage (contract pricing), partitions required for just the contract
pricing calculations were separated and then the base choice, multiple base choice,
and pairwise criteria were applied. Problem analysis showed that of the inputs
defined earlier, only seven inputs, Rate option, GFee, Remittance option type, GFee
grid remittance, LLGFee eligibility, BUBD eligibility, and Max Buyup, control the
calculations. Therefore, the other partitions were not considered. The partitions and
blocks for contract pricing are shown in Table 2. Base choices are highlighted in bold.

Base Choice Tests The base choice tests are shown in Table 3. There is one base
choice test (test #1), and then one test for each non-base block (14). In the non-base
choice tests, the non-base choice values are italicized.

Multiple Base Choice Tests Multiple base choice (MBC) was also used in the
second stage for contract pricing. Table 4 shows these tests. The first base choice
test is the same as with BC, but a second base choice test was added (test #16). With
MBC and two base choice tests, exactly twice as many tests are needed.

Pairwise Tests Pairwise testing was used to test constraints among the parameters.
This resulted in 23 tests, as shown in Table 5. The “∼” means that the indicated value
cannot be used.

Requirements Modeling The testable function for contract pricing was modeled
using the FTM tool. The contract pricing calculation simulator was built in Java. This

1We used Bach’s PERL program to generate pairwise test requirements (Bach 2005). This is
probably more tests than necessary and more modern tools, such as NIST’s ACTS (Kacker and
Kuhn 2008), would probably create far fewer tests.
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Table 1 Contract partitions and blocks

Partition Partition name Blocks

1 Execution option GU, ML, NULL_EO, ∗EO
2 Rate option FI, AR, NULL_RO, ∗RO
3 Master commitment 9CHAR, 10CHAR, 8CHAR, NULL_MC, TBD
4 Security product NUMBER, NULL_SP, ∗SP
5 Security amount DOLLAR_ROUND, ∗DOLLAR_FRACTION,

∗>100B, NULL_SA
6 Contract name CHAR (26), CHAR (25), CHAR (1),

NULL_CONT
7 Settlement date MMDDYYYY, ∗SD, NULL_SD
8 Settlement cycle days 1, 3, 4, 5, ∗6, ∗2, NULL_SCD
9 Security coupon XX.XXX, XXX.XX, NULL_SC, 26.000
10 Servicing option RE, CT, ∗SO, NULL_SO
11 Designated servicer number NULL_DS, DS, ∗DS
12 Minimum required servicing XX.XXX, NULL_MRSS, XXX.XX

spread
13 Minimum servicing spread XX.XXX, NULL_MSSC, XXX.XX

coupon
14 Minimum servicing spread XX.XXX, NULL_MSSM, XXX.XX

margin
15 Minimum servicing spread XX.XXX, NULL_MSSLC, XXX.XX

lifetime ceiling
16 Remittance option AR, SU, FT, GO, ∗RT, NULL_RT
17 Super ARC remittance due day 0, 1, 2, 14, 15, 16, 30, NULL_SARD
18 Required Spread GFee NULL_RSG, ∗RSG, RSG
19 BUBD program type CL, NL, LL, ∗BUBD_PT, NULL
20 BUBD request type NULL_BUBD_RT, BO, BU, BD, NO,

∗BUBD_RT
21 Contract level Buyup/Buydown NULL_CL_BUBD, ∗CL_BUBD, BU, BD, NO
22 BUBD grid type NULL_BUBD_GT, ∗BUBD_GT, A, A-minus,

negotiated 1 grid
23 BU max amount 0, 1, ∗BU_MAX_AMT, NULL_BU_MAX_AMT,

XXX.XXX
24 BD max amount 0, 1, ∗BD_MAX_AMT, NULL_BD_MAX_AMT,

XXX.XXX
25 Pool number NULL_PNO, PNO, ∗PNO
26 Index look back period NULL_ILP, ∗ILP, ILP
27 Fee type FT, ∗FT, NULL_FT
28 Fee payment method Delivery fee, GFee add on, ∗FTM, NULL_FTM
29 Prepayment penalty indicator Y, N

simulator program reads inputs from the spreadsheet, performs the calculations, and
then outputs the results into another spreadsheet. This resulted in 27 tests, as shown
in Table 6.

Running the Tests All tests, both ISP and requirements modeling tests, were given
to the calculation simulator. The calculation simulator performs the calculations and
generates expected results for each test input, then writes them into a spreadsheet.

All tests were input to the system-under-test using Rational’s robot tool (IBM
2011). The system has a feature called import contracts that allows all tests to be
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Table 2 Contract pricing
partitions and blocks

Partition Partition name Blocks

1 Rate option Fixed, ARM
2 GFee NotNull, null
3 Remittance option type Gold, FirstTuesday,

ARC, SuperARC
4 GFEE grid remittance Gold, FirstTuesday,

option ARC, SuperARC
5 MC LLGFee eligibility Y, N
6 BUBD eligibility Prohibited, required,

optional
7 Max Buyup <12.5, =12.5, >12.5,

NULL

bundled into a flat file and imported at once. When the contract is created, the system
automatically prices the contracts and stores the pricing results in the database as the
actual results.

4.2 Loan Pricing

The Loan Pricing feature prices loans when they are newly created or after business
users request a reprice. Price recalculations for swap loans are triggered by data
corrections to one or more data elements used in the price calculation. These data
corrections can be one or both of the internal FM price definition terms (grid
data), or seller delivered loan/contract data for fields that affect the price. Either type
of data correction will trigger a total price recalculation of all price components that
apply to the loan, including GFEE/LLGFEE, BUBD and Delivery Fees. The price
recalculation can be approved either automatically or by hand. Any data change

Table 3 Contract pricing stage 2 base choice tests

Test # Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup

option eligibility

1 ARM NotNull Gold Gold Y Prohibited <12.5
Base

2 Fixed Null Gold Gold Y Prohibited <12.5
3 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
4 Fixed NotNull ARC Gold Y Prohibited <12.5
5 Fixed NotNull SuperArc Gold Y Prohibited <12.5
6 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
7 Fixed NotNull Gold ARC Y Prohibited <12.5
8 Fixed NotNull Gold SuperArc Y Prohibited <12.5
9 Fixed NotNull Gold Gold N Prohibited <12.5
10 Fixed NotNull Gold Gold Y Required <12.5
11 Fixed NotNull Gold Gold Y Optional <12.5
12 Fixed NotNull Gold Gold Y Prohibited =12.5
13 Fixed NotNull Gold Gold Y Prohibited >12.5
14 Fixed NotNull Gold Gold Y Prohibited NULL
15 Fixed NotNull Gold Gold Y Prohibited <12.5
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Table 4 Contract pricing stage 2 multiple base choice tests

Test # Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup

option eligibility

1 Fixed NotNull Gold Gold Y Prohibited <12.5
Base

2 ARM NotNull Gold Gold Y Prohibited <12.5
3 Fixed Null Gold Gold Y Prohibited <12.5
4 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
5 Fixed NotNull ARC Gold Y Prohibited <12.5
6 Fixed NotNull SuperArc Gold Y Prohibited <12.5
7 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
8 Fixed NotNull Gold ARC Y Prohibited <12.5
9 Fixed NotNull Gold SuperArc Y Prohibited <12.5
10 Fixed NotNull Gold Gold N Prohibited <12.5
11 Fixed NotNull Gold Gold Y Required <12.5
12 Fixed NotNull Gold Gold Y Optional <12.5
13 Fixed NotNull Gold Gold Y Prohibited =12.5
14 Fixed NotNull Gold Gold Y Prohibited >12.5
15 Fixed NotNull Gold Gold Y Prohibited Null

16 ARM NotNull SuperArc Gold N Prohibited =12.5
Base

17 Fixed NotNull SuperArc Gold N Prohibited =12.5
18 ARM Null SuperArc Gold N Prohibited =12.5
19 ARM NotNull Gold Gold N Prohibited =12.5
20 ARM NotNull FirstTuesday Gold N Prohibited =12.5
21 ARM NotNull ARC Gold N Prohibited =12.5
22 ARM NotNull SuperArc FirstTuesday N Prohibited =12.5
23 ARM NotNull SuperArc ARC N Prohibited =12.5
24 ARM NotNull SuperArc SuperArc N Prohibited =12.5
25 ARM NotNull SuperArc Gold Y Prohibited =12.5
26 ARM NotNull SuperArc Gold N Required =12.5
27 ARM NotNull SuperArc Gold N Optional =12.5
28 ARM NotNull SuperArc Gold N Prohibited <12.5
29 ARM NotNull SuperArc Gold N Prohibited >12.5
30 ARM NotNull SuperArc Gold N Prohibited Null

to loan and/or delivery fee data will trigger a recalculation and reprice all price
component data that are effective at the time of settlement. This includes any changes
to BUBD or contract GFEE grid definition terms.

The mortgage loan entity has nearly 150 attributes, but only a few are relevant to
Loan Pricing. Twelve partitions were identified in this testable function. Two of the
12 are received from the price grids. These values are updated in the grids based on
the current market. Three others are intermediate parameters whose values are used
in the final calculations. Even though they participate in the calculations, their values
depend on the values of the other attributes that are inputs. (This is an example of
the controllability problem in these applications.)

Among the 12 partitions, only six influence the controllability of the pricing
calculations. The remaining six influence observability. Test cases were derived for
the base choice (26 tests), the multiple-base choice (52 tests), and the pairwise
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Table 5 Contract pricing stage 2 pairwise tests

Test # Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup

option eligibility

1 Fixed NotNull Gold Gold Y Prohibited <12.5
2 ARM Null FirstTuesday Gold N Required =12.5
3 Fixed Null FirstTuesday FirstTuesday Y Optional <12.5
4 ARM NotNull Gold FirstTuesday N Prohibited =12.5
5 Fixed NotNull ARC ARC N Required >12.5
6 ARM NotNull SuperArc ARC Y Optional Null
7 Fixed Null SuperArc SuperArc N Prohibited >12.5
8 ARM Null ARC SuperArc Y Required Null
9 ARM Null Gold ARC N Required <12.5
10 Fixed NotNull FirstTuesday SuperArc Y Optional =12.5
11 ARM ∼Null Gold Gold Y Optional >12.5
12 Fixed ∼NotNull FirstTuesday FirstTuesday N Prohibited Null
13 ∼ARM ∼NotNull ARC FirstTuesday N Optional >12.5
14 ∼Fixed ∼Null ARC ARC ∼Y Prohibited =12.5
15 ∼Fixed ∼NotNull SuperArc Gold ∼N Required Null
16 ∼ARM ∼NotNull SuperArc SuperArc ∼N ∼Prohibited <12.5
17 ∼Fixed ∼Null SuperArc FirstTuesday ∼Y Required >12.5
18 ∼Fixed ∼Null Gold Gold ∼N ∼Optional Null
19 ∼ARM ∼NotNull ARC Gold ∼Y ∼Prohibited <12.5
20 ∼ARM ∼NotNull FirstTuesday ARC ∼Y ∼Required =12.5
21 ∼Fixed ∼Null Gold SuperArc ∼N ∼Optional =12.5
22 ∼ARM ∼Null FirstTuesday ∼FirstTuesday ∼Y ∼Prohibited >12.5
23 ∼ARM ∼Null SuperArc ∼ARC ∼N ∼Optional =12.5

coverage criteria (72 tests). The requirements model approach was used to generate
131 tests, many of which were redundant because the same flow of information is
duplicated for Fixed, ARM and Balloon contracts. More details about the Loan
Pricing test designs can be found in Alluri’s MS thesis (Alluri 2008).

4.3 Amortization

The amortization calculator is a modular software component that calculates the
amortized cash flows for a given loan. Calculating the loan amortization requires
11 steps.

This system is an example of how different calculations will be triggered based
on preceding conditions. A total of 15 calculations follow one another in a sequence
and feed their outputs to the following calculator. Five are preliminary calculations.
The remaining 10 execute recursively until the end of the loan’s term. For example,
the ending balance of the loan changes from month to month, e.g., if the loan’s life
is 30 years, the loan will have 360 installments and when amortized it will have 360
records with varying ending balances for each month. For a given loan, the same
types of calculations occur 360 times. Therefore, when defining the scope of each
testable function, the loop is considered as one partition and critical characteristics
of loops are included as the blocks.

The system has 160 attributes, but only 14 contribute to the calculations. All 15
calculations were treated as testable functions. The total number of base choice
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Table 6 Contract pricing stage 2 requirements modeling tests

Test # Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup

option eligibility

1 Fixed NotNull Gold Gold Y Prohibited >12.5
2 Fixed NotNull Gold Gold Y Prohibited ≤12.5
3 Fixed NotNull Gold Gold Y Prohibited >12.5
4 Fixed NotNull Gold Gold Y Prohibited ≤12.5
5 Fixed NotNull Gold SuperArc Y Prohibited >12.5
6 Fixed NotNull Gold SuperArc Y Prohibited >12.5
7 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5
8 Fixed NotNull Gold ARC Y Prohibited ≤12.5
9 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5
10 Fixed NotNull Gold FirstTuesday Y Prohibited >12.5
11 Fixed NotNull Gold ARC Y Prohibited ≤12.5
12 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5
13 Fixed NotNull Gold Gold N Prohibited >12.5
14 Fixed NotNull Gold Gold N Prohibited ≤12.5
15 Fixed NotNull Gold SuperArc N Prohibited >12.5
16 Fixed NotNull Gold SuperArc N Prohibited ≤12.5
17 Fixed NotNull Gold SuperArc N Prohibited >12.5
18 Fixed NotNull Gold SuperArc N Prohibited ≤12.5
19 ARM NotNull FirstTuesday FirstTuesday Y Prohibited >25
20 ARM NotNull FirstTuesday FirstTuesday Y Prohibited ≤25
21 ARM NotNull FirstTuesday ARC Y Prohibited >25
22 ARM NotNull FirstTuesday ARC Y Prohibited ≤25
23 ARM NotNull FirstTuesday SuperArc Y Prohibited >25
24 ARM NotNull FirstTuesday SuperArc Y Prohibited ≤25
25 ARM NotNull FirstTuesday FirstTuesday N Prohibited >12.5
26 ARM NotNull FirstTuesday ARC N Prohibited =12.5
27 ARM NotNull FirstTuesday ARC N Prohibited =12.5

tests is 74. The multiple base choice coverage criterion did not offer any additional
coverage, as the partitions are the same for all the instruments. Thus MBC was not
used for this system. The blocks had no constraints among them, so the pairwise
coverage criterion also did not offer any additional coverage, and was not used.
In addition, the FTM tool was not available when this system was tested, so the
modeling technique was not used in the Amortization system. More details about
the Loan Pricing test designs can be found in Alluri’s MS thesis (Alluri 2008).

4.4 Static Effective Yield

Specifications to calculate the Static Effective Yield (SEY) are described in the
form of use cases. This calculation is used in GO Amortization to calculate SEY
amortization for pools and in segments reporting to calculate SEY amortization for
cohorts of whole loans. Amortization calculation functions are recursive in nature.

The use case document had nine sections, but only the two with functional
requirements were used in this system. The testing team identified eight test-
able functions.

Applying the base choice coverage criterion yielded 64 tests. The multiple base
choice coverage criterion did not offer any additional coverage, so was not used for
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this system. The blocks had no constraints among them, so the pairwise coverage
criterion also did not offer any additional coverage, and was not used.

The requirements were classified into eight testable functions. For the modeling
technique, the requirements were grouped into three testable functions, producing 12
test cases. More details about the Loan Pricing test designs can be found in Alluri’s
MS thesis (Alluri 2008).

5 Results

The studies documented here only represent part of the complete set of software
systems on which this approach was applied, but the results were similar on other
software components. For example, the Contract Pricing and Loan Pricing systems
belong to the Selling System, which has about 1200 Java files.

This study measured two things; the ability of the tests to find faults, and coverage
of the tests. Results on these are described in the following subsections.

5.1 Fault Detection

All faults were naturally occurring and we did not know a priori how many total faults
were in the software. The programs’ correctness were determined by comparing the
outputs of the system-under-test and a simulator. Fault detection was not recorded
for the stage 1 tests, so only results from stage 2 tests are given. Faults found for all
tests on the four systems are shown in Table 7.

From these data, it is clear that the criteria-based tests found far more faults
than the requirements-based tests. Just considering the two systems that used
requirements-based tests, the criteria-based tests found 14, 17, and 23 faults, whereas
the RM tests only found 7. The specific faults found were all cumulative, that is, all
the faults found by RM were also found by BC, all the faults found by BC were
also found by MBC, and all the faults found by MBC were also found by PW. After
seeing these results, the program manager refused funding for further RM tests. This
was a business decision that we had to respect, even though we would prefer to have
more data.

Although we were not able to capture the human costs of creating these tests
(which are affected by so many factors that the results would hardly be generalizable
anyway), the managers reported that the testing cycle was reduced from five human
days to 0.5.

We can also take the number of tests as a rough measure of cost. A simple way
to estimate test ef f iciency of set of tests is to divide the number of faults found by

Table 7 Faults found by all test sets, including stage 1 and stage 2

Software system BC Faults MBC Faults PW Faults RM Faults
tests found tests found tests found tests found

Contract pricing 15 6 30 7 230 12 27 3
Loan pricing 26 8 52 10 72 11 131 4
Amortization 74 18 N/A N/A N/A
Static effective yield 64 17 N/A N/A N/A
Total 179 49 82 17 302 23 158 7
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Table 8 Fault efficiency – all
four studies

Criterion Tests Faults Efficiency

BC 179 49 0.27
MBC 82 17 0.21
PW 302 23 0.08
RM 158 7 0.04

the number of tests. Table 8 shows that all four criteria-based design techniques
were far more efficient than the requirements modeling approach. Recall that we
cannot compare the total numbers for BC with the other criteria because it was
applied to all four studies. These data are also not generalizable because of the small
sample sizes. Nevertheless, these data convinced management at Freddie Mac of the
positive return on investment for criteria-based testing and automation. We know of
no industry standard for the percentage of tests that are expected to find faults, but
the test managers at Freddie Mac were shocked at these numbers. Based on their
experience, they expected about 5 % of the tests to reveal a fault, and considered
10 % efficiency to be outstanding (or a sign of very poor software).

Further analysis has revealed that the tool used to create pairwise tests was
somewhat inefficient. In fact, NIST’s ACTS pairwise tool (Kacker and Kuhn 2008)
created only 17 tests in stage 1 for the Contract Pricing system. This would change
the total number of tests from 230 to 40, and if those tests found the same number
of faults, the efficiency would be over 50 %. Of course, we are not able to run those
tests on the same software, so we cannot know whether a similar number of faults
would be found.

We also believe that the data from the MBC and PW tests emphasize that the
extra work will find more faults, but with higher cost. Thus the strategy we used
of bringing in the stronger criteria when the extra expense is deemed necessary,
was validated.

Perhaps the strongest result, however, came after the software was completed and
deployed. During the final system testing of these projects, 17,000 records were run
and zero defects were detected. This had never happened with any Freddie Mac
software before, and this was the first system to go into production with zero non-
conformances. In the years since this project finished (in 2008), ZERO faults have
been detected in the software tested.

This might be a little surprising in the systems where MBC and PW were not used,
since they found additional faults when they were used. But testing stopped with BC
when analysis of the input domain model (the partitions and blocks) indicated MBC
and PW would not improve testing. So we would not expect many additional faults
to be found by stronger criteria in those systems. On the other hand, these systems
could have faults that simply have not been revealed as failures yet.

5.2 Coverage Measurement

Two types of coverage measures were used to determine the effectiveness of testing:
functional coverage and structural coverage. In this paper, functional coverage is a
measure of the number of functional requirements executed, and structural coverage
is a measure of the code statements executed (LOC). We used the requirements
traceability matrix (RTM), which is the list of requirements and the tests that tested
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Table 9 Statement coverage results

Software system LOC BC Cover MBC Cover PW Cover RM Cover
(%) (%) (%) (%)

Contract pricing
SwapContractService 258 15 86 30 92 23 92 27 92
SwapContractCalculator 166 15 85 30 90 23 90 27 82

Loan pricing 882 26 86 52 89 72 92 131 97
Amortization 3254 74 100
Static effective yield 1574 56 100

each, to evaluate functional coverage and Parasoft’s jTest2 to evaluate structural
coverage. jTest offers statistics for statement and method coverage (but not branch,
for example). Testers did not have access to the source code, so we relied on
developers to help us gather the structural coverage.

Table 9 shows the statement coverage for the stage 2 tests on all four systems,
broken into four separate sections for each system. The coverage on the two major
components of Contract Pricing are shown separately, although the same tests were
used on both.

Table 10 shows the functional requirements coverage for the stage 2 tests on all
four systems studied, broken into four separate sections for each system. All tests
achieved 100 % functional requirements coverage.

Contract Pricing had 89 requirements for business rules, 22 system-specific re-
quirements, and 92 requirements to generate error messages, for a total of 203
requirements. It had an additional 22 requirements for different combinations of
the attributes. The BC tests covered all 203 requirements and 8 of 22 combina-
tion requirements. The other combination requirements were covered by the pair-
wise tests.

The Loan Pricing requirements were captured in use cases that have one main
flow, one alternate flow, and three exception flows. The BC, MBC, and PW tests all
covered 100 % of the functional requirements.

5.3 Observations

After testing was completed, we asked the testers and managers informally about
their opinions of the process and the results. The testers all agreed that the PW
criterion is less useful when the characteristics have a large number of attributes
because it is difficult to map the PW tests to the requirements when traceability is
important. However, the pairwise criterion definitely helps reduce or eliminate the
duplicate pairs of inputs and hence is used to eliminate the constraints that do not
coexist. If the implementation is such that it will not allow these combinations to
be input, then almost all of the pairwise tests become infeasible. Grindal et al. (2007)
proposed a submodel strategy to handle constraints, which was later found to be more
useful for this problem than using PW directly as in this system. Newer tools such

2http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
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Table 10 Functional requirements coverage results

Software system BC Cover MBC Cover PW Cover RM Cover
(%) (%) (%) (%)

Contract pricing 15 100 30 100 23 100 27 100
Loan pricing 26 100 52 100 72 100 131 100
Amortization 74 100
Static effective yield 56 100

as NIST’s ACTS (Kacker and Kuhn 2008) can include constraints during test data
generation, making PW even simpler to apply. Although the pairwise criteria was
able to cover the 16 requirements that MBC could not, it took a very long time to
filter the tests from all the PW tests.

The attributes for Loan Pricing had many constraints. The PW tests gave good
coverage, but with a lot of tests. As noted previously, this may be an artifact of the
tool used to compute pairwise. PW often has fewer tests than BC. Generally, the
number of tests needed for BC is proportional to the number of partitions, whereas
the number of tests needed for PW is only log the number of partitions (Ammann
and Offutt 2008; Grindal et al. 2005). To manually determine which PW tests filled
the gaps left by BC took very long time. Most of the requirements modeling tests
were redundant because the same information flow is duplicated for Fixed, ARM,
and Balloon loans. The requirements model generated 131 tests, many of which
were redundant because the same information flow was duplicated for three different
kinds of contracts.

Initially, 12 requirements tests were designed for the Static Effective Yield
study, but they were flawed in a way that would have made them very expensive
to automate.

5.4 Threats to Validity

A study like this has several threats to validity. Most obviously, the study was within
one company on a particular kind of software. Thus we cannot be sure that the
success would be duplicated in other settings. Another potential validity threat is
the FTM tool used in the study, which could have been flawed. Great care was taken
to test FTM and the models and resulting tests were spot-checked for accuracy. If
FTM was flawed, it seems likely the resulting tests would be less effective, thus this
would be a bias against the results presented in this paper. Also, at certain points
in the process (as described in Section 3) human testers had to make decisions. It
is possible that different testers would have different results. Taken together, these
threats mean that we cannot conclude that this type of testing will succeed in all
settings. Rather, we know that it is possible for this type of testing to improve testing
and lead to higher quality software in some settings.

6 Conclusions and Future Work

This paper shows how high-end, criteria-based, semi-automated test design and im-
plementation can have a strong positive impact on testing in industry. The company,
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Freddie Mac, depends on software for success in all aspects of its business and the
quality of its software is a primary factor in the success of the company. Problems
with the software can result in loss of very large amounts of money. After testing was
completed, we asked the testers and managers informally about their opinions of
the process and the results. All parties involved, including test management, testers,
developers, development managers, and upper management, agreed that this testing
process helped create tests that were more effective and with less cost. As a result
of this industrial study, these ideas are being infused into software development
and software testing is being improved throughout the company. As far as we
know, nobody has reported on the use of input space partitioning in an industrial
setting before.

As additional analysis, we analyzed post-testing defects in the previous eight
releases for the software used in systems 1 and 2. The analysis showed that the
testing approaches used in this study would have eliminated 75 % of the post-delivery
defects.

The overriding advantage of using ISP (a criterion-based) approach was not
surprising: we were able to generate fewer tests that were more effective, and do
it more efficiently. The ISP method does not require a strong background in math or
computer science, both of which are often short in software testing teams. The ISP
method also has a very clear, structured, process to follow, which the testers reported
being very comfortable with. We were pleased to find that the ISP tests gave good
coverage of both requirements and source code. It was also very convenient to have
a range of test criteria, allowing testers to “start small” (with BC) and move up to
stronger criteria (MBC and PW) when needed.

The strong documentation and automation of our tests also helped with a problem
called data aging. In financial calculations, tests during one reporting cycle (for
example, a month) have to change to be used in another reporting cycle. By designing
our tests in an abstract way, the same abstract tests could be reused in multiple
reporting cycles by instantiating them with new values. Not surprisingly, the same
characteristics of the tests made it easy to regenerate new tests when requirements
and design changed.

One disadvantage of input space partitioning is that the quality of the results
depended somewhat on how well the testable functions are identified and how
discrete they are. For example, system 3 initially considered all the calculators as
one single testable function. When the 11 separate calculations were considered
as individual testable functions, they become very simple and straightforward. ISP
also has the potential to generate a lot of tests, so is not effective without strong
automation. If not designed carefully, the pairwise criterion can lead to many invalid
tests. Both of these problems were present with the tool used in this study, but not
in more modern tools such as PICT (Czerwoka 2006) and ACTS (Kacker and Kuhn
2008).

Automating the requirements modeling approach provided many advantages,
starting with the fact that the tool allowed tests to be quickly generated from the
model. When modeled early, the requirements let the test analyst approximate
the number of tests needed. The FTM tool also provides clear traceability from
requirements to tests, as well as helping ensure tests are repeatable and detailed,
important audit requirements for the testing. We were also able to share the
requirements models, in their tree structure, with business analysts, programmers,
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and testers, which greatly improved understanding of the entire process. Having the
models available also made it very easy to adapt to changes in the requirements, and
identify relations or constraints among input attributes to the software.

A disadvantage of the modeling approach is that it put a burden on the testers.
To create the models, the test design team needs to understand software design
and construction to do things like analyze UML diagrams and anticipate potential
programming mistakes. In addition, the test team also needs to have substantial
domain knowledge. We found that few people have both kinds of knowledge, so
the teams must be well formed and have good communication. We also found that
different test designers modeled the same requirements differently. Some designers
wanted to refine the models continuously, seeking unachievable perfection, whereas
others were quicker but made mistakes such as omitting important requirements
or creating lots of redundant tests (as in system 2). Another problem encountered
is that different teams have different development processes, causing management
overhead in adapting the new testing ideas to each different process.

A problem we identified early is that Freddie Mac’s software exhibits both low
controllability and low observability. We interpret the high statement coverage to
mean that we were able to solve the controllability problem. We addressed the
observability problem by asking the programmers to log intermediate values; this
made it much easier to diagnose the differences in expected and actual results.
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