

School of Innovation,
Design and Engineering

Module 3: Assignment (INL5)

This document provides the instructions for the Module 3 assignment INL5 on
combinatorial testing in DVA-434. The assignment, when completed,
corresponds to 0.5 credits of the 7.5 credits in the course examination. Once you
have completed the assignment, please send your report to
daniel.sundmark@mdh.se.

Objective and Platform
The goal of this exercise is to experiment with combinatorial issues when testing
software. We will use a tool called Hexawise (www.hexawise.com). To complete
this exercise, you are required to create an account (by visiting the above URL) for
using the trial version of the tool. Once you have access to the tool, there are
several online tutorials at Hexawise that will help you solve tasks in this exercise.

Note that there are several other tools available for combinatorial testing, and we
do not particularly promote Hexawise. It however serves the purpose of this
assignment well, and it is free for non-commercial use.

Overview
The task is to create tests for a component that handles a car specification in a car
booking service. Depending on the property values, a different car will be booked
and placed in front of your house.

The parameters and corresponding values are as follows:

1. CarType Truck, Jeep, Mini-van, Mini
2. Color Blue, Lilac, Yellow
3. Engine Diesel, Gasoline
4. PassengerSeatAirbag Yes, No
5. PassengerSeatSideAirbag Yes, No
6. SideAirbagBack Left, Right, None
7. Seatbelts Yes, No
8. PassengerSeatChildSeat Yes, No

Task 1: Create a test plan in Hexawise
The first task is to create a new test plan and enter above parameters along with
their values.

1. Create a paired “2-way interactions” test suite. How many tests did this

require?

2. What is the theoretical number of tests to exhaustively cover all combinations?

2(3)

As you see, the tool generates a set of test cases with input values. In a real example
you would have to provide some kind of oracle (expected result of a test) that tells
whether the chosen car is present in the database or not.
You do not need to implement this though but take a look at how this is done in the
tool for a few steps in your test plan.

Task 2: Removing impossible test cases (adding constraints)
One can argue for removing combinations that are illegal or impossible, to make
sure that we do not test in vain. In our case, the traffic regulations say that you
cannot put a child seat in the passenger seat if there exists an airbag. Furthermore,
a Truck (in our context) never has a back seat, which implies that we cannot have
any SideAirbagBack.

Check the manual on how to add constraints and add those to your test plan (Hint:
You click in the table under “Define Inputs” in the edit parameter window).

1. How many tests do you get for 2-way interactions after adding above

constraints? Please save your 2-way interactions tests in an Excel file. Also try
out the different X-way interactions

2. Is the result what you would have expected for 2-way interactions? Please
also comment briefly as to why did you get that result.

3. Compare the list of tests after adding constraints with the first list. Please

comment on the changes you find in both the lists.

4. Discuss with a colleague some situations where it is actually necessary to test
invalid combinations.

Task 3: Enforcing pairs (adding requirements)
On the other hand, some combinations may be mandatory to test. Since we know
that most of our customers want a yellow truck with passenger seat airbag, we
want to make sure that we always include a test for this combination. (Hint: Fill
out the Expected Result. This will make it easier for you to spot the generated test
case due to your requirement)

1. How many tests did you get now and why?

2. Do you test your requirement(s)?

Task 4: Adding parameters to see combinatorial growth
Now add a parameter and one value and check how many more possible pairwise
tests we get.

Add a few more values to the parameter and check again after adding each value

Add a few parameters with different number of values until you have a feeling of

3(3)

what affects the number of 2-way interaction tests most. A new parameter or
another possible value?

