
boftware

* Most verification is
concerned with finding incorrect
code. Instead, this view looks at
the probability that the code will
fiil i f i t isfiulty. The authors
present the benefits of their
approach, describe how to design
for it, and show how to measure
testability through sensitivity
analysis.

Testability :
The New
Verification
JEFFREY M . VOAS , Reliable Software Technologies Corp.
KEITH w. MlLLER, Sungumon state University

often the last defense against disasters
caused by faulty software development.
When lives and fortunes depend on
software, software quality and its verifi-
cation demand increased attention. As
software begins to replace human deci-
sionmakers, a fundamental concern is
whether a machine will be able to per-
form the tasks with the same level of
precision as a skilled person. The relia-
bility of an automated system must be
high enough to avoid a catastrophe.

But how do you determine that crit-
ical automated systems are acceptably
safe and reliable? In this article, we pre-
sent a new view of verification and offer
techniques that will help developers
make this assessment. Our view, whch
we label s o f i a r e testability, looks at

I E E E S O F T W A R E 07407459/95/$M m Q 1995 I E E

dynamic behavior, not just syntax. This
differs from traditional verification and
testability views, as the box on pp. 18-
19 describes.

REUABlllTY PUZZLE

Every system has a true (or fixed)
reliability that is generally unknown.
Software testability, software testing,
and formal verification are three pieces
of the reliability puzzle, which devel-
opers must complete to get a picture of
the software’s true reliability. Each of
the three puzzle pieces offers a unique
bit of information about software qual-
ity. The goal is to combine all three.
Testability analysis is related to but
distinct from both software testing and

1 7

I

VERIFICATION AND TESTABILITY VIEWS
O u r views on both verification and testability differ

from some of the more widely accepted views.

Verification. The IEEE Standard Glo.r.raly oj’Sofimwr
Exgineel-ing Te?minology‘ defines software verification as
the “process of evaluating a system or component to
determine whether the products of a given development
phase satisfy the conditions imposed at the start of that
phase.”

Restated, software verification is the process that
assesses the software’s degree of acceptability, which is
judged according to the specification. Software verifica-
tion is broadly divided into two classes:

+ Dynamic sojbare testing is the process of executing
the software repeatedly until a confidence is gained either
that the software is correct and has no more defects,
referred to as probable correctness,’ or that the software has
a high enough level of acceptability. Testing can be either
white-box or black-box. White-box testing bases its selec-
tion of test cases on the code itself; black-box testing bases
its selection on some description of the legal input
domain. White-box testing gives you better coverage
because it exercises larger regions, but white-box tech-

niques are often helpless against classes of taults like miss-
ing code, which black-box testing can catch.

+ Fominl rerifiixtion typically involves some level of sta-
tic theorem-proving -the mathematical process of show-
ing that the function computed by a program matches the
function specified. No program executions occur in this
process, and the result is a binary value: either the function
computed by the program matches the specification or it
does not. Problems arise in this rigorous process because
of questions about program termination and the correct-
ness of the rigorous process itself (who will prove the
proof?). Furthermore, the process of completing such a
proof can be more difficult than writing the program itself.

In this article, we describe a different type of verifica-
tion that can complement both dynamic testing and static
theorem-proving.

Testability. The IEEE Standard Glossary of Sojhure
Engineering Terminology’ defines testability as

“(I) the degree to which a system or cmponent facilitates
the establishent of test criteria and the perfmmance of
tests t o determine whether those criteria have been met,

1 ’

~

formal verification, which makes it a
good complement to the other two
pieces. Like software testing, testability
analysis requires empirical work to cre-
ate estimates. Unlike testing, however,
testability analysis does not require an
oracle - a program that performs the
same functions as the software being
developed. Thus, testing can reveal
faults, while testability cannot, but
testability can suggest places where
faults can hide from testing, which
testing cannot do. Testability comple-
ments formal verification by providing
empirical evidence of behavior, whch
formal verification cannot do.

Testability information cannot
replace testing and formal verification;
but neither should developers rely
exclusively on testing and formal veri-
fication. To be highly reliable, the
software must have high testability,
undergone enormous amounts of suc-
cessful testing, and experienced formal
verification. (In this article, we assume
that “highly reliable” means fail-
ures in a 10-hour period, although

1 8

testing alone can never demonstrate
this degree of precision.’)

To illustrate how the three pieces fit
together, consider a system that has 50
modules. Each module is tested with
100 random tests, and all modules pass
the tests. In addition, the system passes
100 random tests. Ten of the modules,
judged the most intricate and critical,
are subjected to formal verification at
various points in their development.
Testability analysis reveals that five
modules are highly insensitive to testing
- testing is unlikely to find faults in
these modules if faults exist. Only one
of these five has been formally verified.
At this point, verification resources
should concentrate on the four modules
that have low testability and have not
been formally verified; they are the
most vulnerable to hidden faults.

As another example, consider a sys-
tem built entirely of formally verified
modules. Using a development
approach inspired by Cleanroom, the
developers wait until after system inte-
gration to do random system testing.

During this testing, some faults are dis-
covered and the code is repaired.
Regression testing and new random
tests reveal no more failures, but testa-
bility analysis identifies several places in
the code where testing is highly unlikely
to reveal faults. These pieces of code
are subjected to further formal analysis,
and nonrandom tests are devised to
exercise these sections more extensively.

HOW TESTABILITY WORKS

Ow focus here is on one part of the
puzzle, testability - how to design for it
and how to measure the degree to which
you have achieved it. To better illusmate
what we mean by software testability,
we offer two simple analogies.

The first shows how testability can
enhance testing. Suppose software faults
were gold. Software testing would be
the actual mining process; software
testability would be a geologist’s survey
before mining begins. The geologist
does not actually dig for the gold, but

M A Y 1 9 9 5

and (2) the degree t o which a requirement is stated in
t e r n that permit establishment of test criteria and pefor-
mance of tests to determine vjhether those rriteria have
been met.”

According to this definition, to determine the degree you
must have a test criteria. Consequently, testability is simply
a measure of how hard it is to satisfy a particular testing
goal, such as a coverage percentage or complete fault eradi-
cation. Testability requires an input distribution (commonly
called a user profile), but thls requirement is not unique to
testability; any statistical prediction of semantic behavior
during software operation must include an assumption
about the distributions of inputs during operation.*

Our definition of software testability focuses on the proba-
bility that a piece of software will fail on its next execution
during testing (with a pamcular assumed input distribution) if
the software includes a fault. By contrast, the standard IEEE
definition focuses on assessing if the U 0 pairs are correct

Computer science researchers have spent years developing
sohare-reliability models M answer the question, What is the
probability that this code is faulty? Soha re testability exam-
ines a &&rent behavioral characteristic: the likelihood that the

code can fail $something in the code is incorrect. It asks the ques-
tion, What is the probability this code will fail if it is hulty?

Our testability differs from traditional views in another
sense: In the past, software testability has been used infor-
mally to discuss the ease with which some input selection cri-
teria can be satisfied during testing. For example, if a tester
wanted full branch coverage during testing and found it diffi-
cult to select inputs that cover more than half the branches,
the software would be classified as having poor testability.

In contrast, our testability is not concerned only with
finding sets of inputs that satisfy coverage goals; it is t y n g
to quantify the probability that a particular type of testing
will cause existing faults to fail during testing. We focus our
definition of testability on the semantics of the software,
how it will behave when it contains a fault. This is different
from asking whether it facilitates coverage or is correct.

REFERENCES
I. IEEE Standard Ghary of So~%m Engincuing Tmninobgy, ANSIAEEE

2. R. Hamlet, “Probable Correctness Theory,” In jhut ion Pror&g Lcitm,
Standard 610.12-1990, IEEE Press, New York. 1990.

June 1987, pp. 17-25.

rather establishes the likelihood that
digging at a particular spot would be
rewarding. At one location, the geolo-
gist might say, “This valley may or may
not have gold, but if it does, it will be in
the top 50 feet and all over the valley.”
At another location, the geologist might
say, “If you don’t find gold in the first
10 feet on this plateau, there is no gold.
However, on the next plateau you will
have to dig 100 feet before you can be
sure there is no gold.” Thus, testability
provides some guidance for testing,
which is much better than testing blind.
It can suggest the testing intensity (as
the geologist suggested a digging depth)
or estimate how difficult it will be to
detect a fault at a particular location. If
after testing to that degree of difficulty,
you observe no failures, you can be rea-
sonably sure (in an informal, not a statis-
tical sense) that the program is correct.

T h e second analogy shows that
testability can give you confidence of
correctness in fewer tests (than you
would conduct without it) ifyou are
sure the software will not hide faults.

I E E E S O F T W A R E

Imagine you are writing a program to
scan black-and-white satellite photos,
and you are looking for evidence of a
large barge. If you are sure that the
barge will appear as a black rectangle,
and that any barge will cover an image
area of at least 10 by 20 pixels, you can
have the program use t echques that
it could not use if you had not estab-
lished this barge size ahead of time.

For example, assume the original
image has been subsampled so that
each pixel in the new image is the aver-
age of a five-by-five square of pixels in
the original image. You could scan the
subsampled image 2 5 times more
quickly than the original; with the
established barge size, you could still
detect any barge in the lower resolu-
tion image. (The shape of a suspected
barge could be determined by more
detailed examination of the original
image at higher resolution.) But if the
established barge size was smaller, the
low-resolution image might hide the
barge inside of one of its averaged pix-
els. Thus, there is a direct relationship

between the minimum barge size and
the amount of speedup that can be
accomplished by subsampling.

You can view the search for a barge
as a search for faults in a program, but
instead of examining pixel groups, you
are examining the output from test-
case executions. The barge was large
enough to see at low resolution, so you
could use a coarser grid to locate it. If a
fault will always cause a larger propor-
tion of inputs to fail during testing,
you will need fewer random tests to
reveal the fault. If we can guarantee
that any fault in a program will cause
the program to fail for a sufficiently
large propomon of tests, then we can
reduce the number of tests necessary
to be confident that no faults exist.

No te that in these analogies we
describe random testing, which is what
we have emphasized in our work
because of its attractive statistical prop-
erties. However, software testability
could be defined for different types of
testing, such as dataflow testing and
mutation testing.

1 9

DESIGNING FOR TESTABILITY

Testability’s goal is to assess soft-
ware accurately enough to demonstrate
whether or not it has high quality. If
you use black-box testing alone to
assess software, an intractable amount
of testing is required to establish a very
small probability of failure. For exam-
ple, to assess a probability
of failure that is less than

ing scheme you use, but software
design for testability can improve the
chances of incorporating at least one of
these features. Moreover, designing
software for testability also prevents
the too little, too late problem: If the
code that exists at the verification stage
is flawed because of incorrect or ineffi-
cient design decisions, often little can

be done to undo the mis-
takes without enormous

(e 5 failures per S O W A R E
the true probability of TESTABILITY IS
failure) with a confidence RELATED TO
mately 4.6 billion success- HARDWARE

test, where e represents

of 99 percent, approxi-

ful executions (tests
according to the input I OBSERVABILITY.

additional costs. In inte-
grated-circuit design,
designing for testability has
long been viewed as a nec-
essary step in the overall
process. I C design engi-
neers have a notion -
observability - that is

distributign) are needed!
The practical problems of such testing
are obvious. Furthermore, if during
random black-box testing the software
does fail, it must be b e d , and random
black-box testing must be restarted. In
other words, you must ignore all previ-
ous successful executions and redo the
testing. Statistics show that whenever
you write code, whether you add func-
tionality or b old code, 30 percent of
that code will have new faults. Clearly,
we need to seek new methods that
increase testing effectiveness.

There are two ways to reduce the
number of required tests:

+ Select tests that have a greater
ability to reveal faults.

+ Design software that has a
greater ability to fail when faults do
exist (design for testability).

We favor the second strategy, but it
imposes several criteria on program
design:

+ More of the code must be exer-
cised for each input.

+ Programs must contain constructs
that are likely to cause the state of the
program to become incorrect if the
constructs are themselves incorrect.

Programs must be able to propa-
gate incorrect states into software fail-
ures.

How many and to what extent these
criteria are met depends on what test-

closely related to software
testability. Observability is the ability
to view the value of a particular node
embedded in a circuit. In hardware,
the principal obstacle in testing large-
scale ICs is the inaccessibility of the
internal signals.’

One method of increasing observ-
ability is to increase the chip’s pin
count, letting the extra pins carry out
additional internal signals that can be
checked during testing. In software,
when modules contain local variables,
you lose the ability to see information
in the local variables during functional
testing - somedung that will become
a major issue for object-oriented sys-
tems. T o remedy this, you can apply a
notion similar to increasing the pin
count in a chip: you can increase the
amount of data-state information that
is checked during unit testing.

Ideally, a design process begins with
a (functional description, input dlstrib-
ution) pair that specifies the intended
software. We believe that a theoretical
upper bound exists on the testability
that can be achieved for a given pair. If
we can change the functional descrip-
tion to include more internal informa-
tion, we should be able to increase that
upper bound.

Idonnation loss. Increasing this infor-
mation helps compensate for the loss of

nformation that occurs when internal
nformation computed by a program is
l o t communicated in the program’s
mtput. Information loss increases the
potential that data-state errors will be
zanceled because the lost information
may have contained evidence of incor-
rect data states. Therefore, information
loss decreases testability. Information
loss falls into one of two broad classes:
implicit and explicit.

Imp/id informorion loa. Implicit informa-
tion loss occurs when two or more dif-
ferent incoming parameters are pre-
sented to a user-defined function or a
built-in operator and produce the
Same result.

T o illustrate, consider the case in
which you have an integer-division
computation, a := a div 2, and two
incoming values for a, 5 and 4. T h e
result for both is that a is assigned 2. In
the same example, suppose a user-
defined function takes in two integer
parameters and produces one Boolean
parameter; many integer-2 tuples are
possible, but only 0 or 1 result. In con-
trast, consider the computation a := a +
1, in which there is no implicit infor-
mation loss.

In both these examples, you can
predict that implicit information loss
will occur by statically analyzing the
code. If a specification states that 10
floating-point variables are to be input
to an implementation, and two Boole-
an variables are to contain the imple-
mentation’s output, then you know
that there will likely be some implicit
information loss.

For more specific estimates of
implicit information loss, you can look
at the program’s specification. If a spec-
ification is written with enough infor-
mation about its domain and range, for
example, it can be used to estimate the
degree of implicit information loss that
will occur. In our design-for-testability
strategy, we use a specification metric,
the domain-to-range ratio, to help devel-
opers obtain this information. W e
emphasize, however, that a specifica-
tion’s DRR suggests only part of the

M A Y 1995 2 0

implicit information loss that may
occur, and it will not always be dis-
cernible if a specification does not have
enough information about the domain
and range. It is also suitable for making
only TOZ& predictions about the degree
of loss. You must inspect the code to
get the necessary additional informa-
tion for a more solid estimate.

The DRR is useful because it Fives

greater than p, faults are more likely to
remain undetected (if any exist) during
testing than when a equals p.' Because
evidence of incorrect data states is not

degree of implicit information loss -
Brian Marick noted that faults in
Boolean functions (where the cardinal-
ity of the range is 2) were more apt to

v

important information about possible
testability problems in the code
required to implement the specification
and can help developers focus analysis
and testing resources on the parts of
the code that most need them. T h e
DRR is the ratio of the cardinalitv of

in the data state that are not lost and
are eventually released as output. As
the probability of observing a failure
decreases, the probability of undetected
faults increases.

Another research report presents a
similar conclusion about the relation-

the specification's domain, denoted by
a, to the cardinality of its range, denot-
ed by p. Generally, as the DRR
increases, the potential for implicit

ship of faults remaining undetected
and the type of function containing the
fault.+ While performing mutation
testing experiments with Boolean func-

relation between implicit information
loss and testability.

Implicit information loss is c o n -
mon in many of the built-in operators
of mod ern pro gr a In In i n g 1 an gu a g e s.
Operators such as div, mod, and trunc
have high DRRs. 'Table 1 contains a
set of functions with generalized
degrees of implicit information loss
and DRRs, where (for simplicity) b is
assumed to be a constant, and infinity

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
-
~
~

Function

0 i f a < 0
a otherwise

f (a) = a+l

f (a) = a mod b

f (a) = a div b

f (a) = trunc(a)

f (a) = round(a)

f(4 = sq+>

f(a) = 5qrt(a)

f (a) = a/b

f (a) = a - 1

f(a> = even@)

f (a) = sin@)

f(a) = odd@)

f (a) = not@)

f (a A = (a)or(b)

Implicit Information Loss

1 ~ ~~~~~~

Yes

no 1 Yes

yes

Yes
I yes

no

no I

no

no I

Comment
~~ ~ ~~

a is integer

a is integer

I testability decreases as b decreases, b f 0

testability decreases as 0 increases, h f 0

1 a is real

a is real

1 a is real

a is real, a 2 0

I aisreal,b#O

' a is integer

a is integer

a is integer (degrees), N 2 0

1 aisinteger

a is Boolean

I a, b are Boolean

I E E E S O F T W A R E 21

represents the cardinality of fixed-
length number representations.
Infinities with the subscript R repre-
sent the cardinalities of real numbers;
infinities with the subscript I represent
the cardinalities of integers.

You can also predict information
loss from a description of the function
to be programmed. A function classi-
fied as having a “yes” for implicit
information loss is more likely to
receive an altered incoming parameter
and still produce identical output as if
it had received the original incoming
parameter. A function classified as hav-
ing a “no” for implicit information loss
is likely to produce an altered output if
given an altered incoming parameter.
In other words, a “yes” suggests the
probability that data-state errors would
be canceled; a “no” suggests tha t they
would not.

Figure 1 illustrates the relationship
between implicit information loss and
the DRR. Sixteen a,b input pairs are
presented to two functions: one per-
forms real division; the other, integer
division. For the real-division function,
there are 16 unique outputs; for the
integer-division function there is one.
This supports the DRR classification
in Table 1: Forfla) = a/b (the real-divi-
sion function), there is likely to be no
implicit information loss. Forfla) = a
div b (the integer-division function),
there is likely to be implicit informa-
tion loss.

Explicit informotion loss. Explicit informa-
tion loss occurs when variables are not
validated either during execution (by a
self-test) or at the end of execution as
output. Explicit information loss fre-
quently occurs as a result of infomation

Figure 1. How implicit information loss relates to the domain-to-range ratio.
There are I 6 values coming in: four values for variable a fiom domain A and

four values for variable b fiom domain B. The cross product for (a,b) is 16 two-
tuples. For a/b (real-number division), there are 16 results (no infomation loss),
but for a div b (integer division), there are only two. You can predict implicit
information loss by examining the type of function. Integer functions tend to incur
a loss; real-numberhnctions do not.

hiding, although other factors can con-
tribute to it. Information hiding is a
design philosophy that does not allow
a module to release information that
other modules could potentially mis-
use. This technique is widely accepted
as good structured-programming prac-
tice, and we advocate structured pro-
gramming, but hiding internal infor-
mation is not good for testability at the
system level, because the data in the
local variables cannot be viewed in the
search for faults.

Explicit information loss is harder to
find early in development because it
cannot be predicted by a DRR. T h e
ability to find it depends more on how
the software is designed, and less on the
specification’s I/O pairs. You can
observe explicit information loss
through static code inspection, and pos-
sibly by reviewing the design document
if it is sufficiently detailed. The docu-
ment can reveal things like the number
of local variables or the number of
times a variable is redefined as a new
value. For example, a := a + 1 may be
redefined as a := a mod 2 and again as a
:= function (b,c,d,e,fl. This redefinition is
a form of explicit information loss.

Design heuristics. There are several
ways to minimize the detrimental
effects of both implicit and explicit
information loss on testability, includ-
ing decomposing the specification to
isolate implicit information loss, mini-
mizing the reuse of variables to reduce
implicit information loss, and increas-
ing the use of out parameters to reduce
explicit information loss.

Specificofion decomposition. A major advan-
tage of using the DRR to guide devel-
opment is that it is available very early
in the life cycle. Although the DRR of
a specification cannot be modified
without changing the specification
itself, there are ways to decompose a
specification to reduce the potential
that data-state errors will be canceled
across modules.

During specification decomposi-
tion, you have hands-on control of the

22 M A Y 1 9 9 5

DRR of each subfunction. With this,
you gain an intuitive feeling for how
much testing is needed to attain a cer-
tain confidence that a module is propa-
gating data-state errors. The rule of
thumb that guides this intuition is “the
greater the DRR, the more testing is
needed to overcome the likelihood that
data-state errors will be canceled.”

You can also decompose a specifica-
tion in a manner that classifies the pro-
gram’s modules as having a high or low
DRR. By isolating modules with a low
DRR - those that are more likely to
propagate incoming data-state errors
during program testing - you can shift
testing and analysis resources to mod-
ules that are less likely to do that.

Minimizotion o f vorioble reuse. As we
demonstrated earlier, a computation
such as a := sqr(a) destroys the original
value of a, and although you can take
the square root after this computation
and retrieve the absolute value that a
had, you don’t know if it is positive or
negative. Minimizing variable reuse is
one way to try to decrease the amount
of implicit information loss.

T o minimize variable reuse, you
must either create more complex
expressions or declare more variables.
If you declare more variables, you will
need more memory. If you use more
complex expressions, you will reduce
the testability when a single expression
represents what were previously many
intermediate values.

Although some literature supports
programming languages based on few
or no variables, programs written in
such languages will almost certainly suf-
fer from low testability. For this reason,
we advocate using more variables, and
thus mahng more variables available
during testing. Clearly, adding more
variables can decrease performance.
However, you can gain a significant
payoff in increased testabihty for only a
minor cost in performance. Moreover,
performance costs are machine-orient-
ed, and the cost of machine resources is
decreasing. Testability costs, on the
other hand, are people-oriented, and

iuman resources are becoming increas-
ngly expensive.

lntreosed use of out porometers. As we
iescribed earlier, explicit information
loss caused by local variables parallels
h e notion of low observability in ICs.
Because explicit information loss sug-
gests lower testability, we prefer, when
possible, to lessen the amount of explic-
it information loss that occurs during
testing. Even if you cannot actually
reduce the loss, the reduction strategies
we give here are still
wort% following because
they tell you the location
of modules with the great-
est potential for data-state
error cancellation before
validation begins.

One approach to lim-
iting the amount of
explicit information loss
is to insert w r i t e state-

+ The people formalizing the spec-
ification are forced to produce detailed
information about the states of the
internal computations. This should
increase the likelihood that the code is
written correctly, and i t forces the
code to test itself.

+ The dimensionality of the range
of the intended function is increased,
which may increase the cardinality of
the range, thus reducing information
loss.

In advocating these approaches, we
are no t repudiating the
practice of information

WE MUST
VALIDATE MORE
INTERNAL
IN FORMATION
TO INCREASE
TESTABILITY.

ments to print internal
information. This infor-
mation must then be checked for cor-
rectness during each test. A second
approach is to increase the amount of
output that these subspecifications
return by treating local variables as
out parameters during testing. A third
approach inserts self-tests - called
assertim - that are executed to check
internal information during computa-
tion. When the assertion encounters
an incorrect internal computation, it
produces a message to that effect.

Our research suggests that asser-
tions are particularly useful for testa-
bility analysis. Not only can you use
them to ensure that a particular vari-
able is correct or in the range at some
point during execution, but also a
failed assemon suggests the possibility
that previous computations (on which
the variable definition depends) might
be incorrect. In addition, the messages
about incorrect computations make it
less likely that there are hidden faults.

These three strategies produce two
important results, both of which
essentially increase the software’s
observability:

I E E E S O F T W A R E

hiding during design.
However, when writing
safety-critical software in
particular, there is the
competing imperative of
enhancing testability.
Information not available
during testing encourages
undetected faults; in-
creased output discourages
undetected faults. An

answer to this conflict may be to pat-
tern software testing more closely on
hardware testing by specifjmg special
output variables that are specified and
implemented specifically and exclu-
sively for testing.

Analysis. All the strategies proposed
to mitigate information loss require
additional specified information about
the internal computations. Maybe the
real message of our research is that
until developers make the effort to bet-
ter specify what must occur, even at
the intermediate computation level,
testabilities and assessed reliabilities
will remain low. In other words, devel-
opers must validate more internal infor-
mation if they hope to increase sojiware
testability. T o do this, there must be
some way to check additional internal
information, which means describing
more information in the specification
and requirements phase. If developers
are not willing to specify these details
at some point during this phase, they
cannot expect to substantially improve
reliability assessments.

23

/I SENSITIVIPI ANALYSIS

Once you improve software testa-
bility, there must be some way to mea-
sure that improvement. T o aid this
process, we have devised a model’ that
quantifies testability on the basis of a
sensitivity analysis. Sensitivity analysis
quantifies behavioral information
about the likelihood that faults are hid-
ing. It repeatedly executes the original
program and mutations of its source
code and data states using two assump-
tions: The single-fault assumption says
that the program contains a single
fault, not multiple faults distributed
throughout the program. The simple-
fault assumption says that the fault
exists in a single location, not distrib-
uted throughout the program, and that
this fault is equally likely to be at any
location in the program. The assump-
tion of this single, randomly located
error is a variation on the competent
programmer hypothesis, which main-
tains that a competent programmer
will write code that is
reasonably close to being
correct.

The specific purpose
of sensitivity analysis is to
provide information that
suggests how small the
program’s smallest faults
are likely to be. With this
prediction, you can use
statistical methods to
determine how much
testing will be necessary

observed effects from actual faults; the
weakness is that the faults injected and
observed are only a small set from
what might be an infinite class of
faults.

For a particular location in the
code, sensitivity analysis estimates the
probability of failure that would be
induced in the program by a single
fault. For a failure to occur and be
observed, three things must happen:
the fault must be executed, an incor-
rect data state must be created (and the
original data state becomes “infected”),
and the incorrect state must be propa-
gated to a discernible output. Thus,
sensitivity analysis separates failure
into three types of events - execution,
infection, and propagation - and
applies analysis algorithms to estimate
the probability of each event.

Sensitivity analysis is broken into
three independent processes, each of
which estimates the likelihood of one
of the three events: execution analysis,
infection analysis, and propagation

analysis. (Although we
describe them sequentially,

SENSITIVITY
ANALYSIS
SUGGESTS
HOW SMALL
THE SMALLEST
FAULTS ARE
LIKELY TO BE.

to deiect faults of this
size, thus obtaining a cri-
terion that lets you determine when to
stop testing.

To provide this prediction, sensitiv-
ity analysis injects simulated faults into
the code and estimates their effect on
software observability. I ts success
depends heavily on the testing scheme
used to take this measurement. At the
very least, the testing scheme must
exercise all locations. (Other qualifica-
tions are a matter for debate.)

The strength of sensitivity analysis
is that your prediction is based on

2 4

,.

in a production-analysis
system they could overlap.)
To estimate the likelihood
of an event, each process
divides the number of times
the event occurred by the
number of attempts to force
that event. For example, if
the propagation event
occurs 10 out of 100 times,
the propagation probability
estimate is 0.1.
T h e result of sensitivity

analysis is the estimated probability oj
failure that would result if a particular
location had a fault. This estimate is
obtained by multiplying the means of
the three estimates from the analysis
phases. If you take the minimum over
all three estimates and then obtain a
product, you can obtain a bound on the
minimum probability of failure that
would result if thls location had a fault.
Elsewhere, Voas formalizes the
method to find a predicted probability
of failure from sensitivity analysis.’

Execution analysis. Execution analysis
estimates the probability of execution
for each location by repeatedly execut-
ing the code with inputs selected from
an input distribution or inputs from a
test suite. As with the analysis of ran-
dom testing, the accuracy of execution
analysis depends in part on how well
you have estimated the input distribu-
tion that will drive the software when
it is in use. Execution analysis differs
from random testing, however, in that
it answers the question, “How often
does this code get executed?” for a sin-
gle location. Random testing answers
the question, “IS this code correct?” for
the entire program.

In execution analysis, a single loca-
tion is analyzed with respect to the
number of test cases that execute it.
Our experiments thus far have defined
a location as a piece of source code that
can change the data state (including
YO files and the program counter). A
location could be a single statement in
a high-level language, one code
instruction, o r some intermediate
amount of computation. For example,
an assignment statement and an i f
statement define one location (because
they involve only one variable), while a
statement read (a, b) defines two loca-
tions (because it involves two variables).

Probability is determined by the
number of times a location is executed
relative to the total number of test cases
run (not relative to each test case). For
example, if 100 test cases are run and
the location is executed in 40 of them,
the execution probability is 0.4.

Infection analysis. If a location con-
tains a fault, and if the location is exe-
cuted, the fault may make the data
state incorrect for that input. If so, the
data state becomes infected. T o esti-
mate the probability of infection, the
infection-analysis algorithm performs a
series of syntactic mutations on each
location. A syntactic mutation is a
change from the original syntax into a
new syntax that is grammatically legal
and has a different meaning for at least
one input value.

M A Y 1 9 9 5

After each mutation, the program is
reexecuted with random inputs. As
part of estimating the probability of
infection, each time the monitored
location is executed, the infection-
analysis algorithm immediately com-
pares the data state with the data state
of the original (unmutated) program at
that same point in the execution. If the
state differs, infection has taken place.

Propagation analysis. In this phase, the
location in question is monitored dur-
ing random tests. After the location is
executed, the propagation analyzer
changes the resulting data state by
assigning a random value to one data
item using a predetermined distribu-
tion. (Research is ongoing as to the
best distribution to use for this random
selection.) After the data state is
changed, the program continues exe-
cuting until an output results. T h e
propagation-analysis algorithm com-
pares the output from the changed
data state with the output that would
have resulted without the change. If
the outputs differ, propagation has
occurred and a propagation probability
can be estimated.

Implementation. The single-fault and
simple-fault assumptions underlying
sensitivity analysis are admittedly
flawed and artificially restrict fault
classes. However, without these
assumptions the combinatorics of sim-
ulating classes of distributed or multi-
ple faults becomes intractable.
Moreover, despite this theoretical
weakness, empirical techniques have
yielded impressive experimental
results.5

Sensitivity analysis is a new, empir-
ical technique. The complexity of the
processing required for sensitivitj
analysis is quadratic in the number oj
code locations and therefore require:
considerable bookkeeping and execu-
tion time. Pilot experiments in thc
early 1990s were done using hand-
coded syntactic mutations and onlj
semiautomated data-state mutations
However, because sensitivity analysi:

’
1

loes not require an oracle, it can be
:ompletely automated for programs of
my size, although processing time can
be a practical limit for large programs
malyzed in a single block. Reliable
Software Technologies Corp. has built
2 fully automated and commercialized
sensitivity-analysis tool, Pisces 1 .5 ,
and applied it to systems as large as
100,000 source lines of code. The tool
can operate on larger systems, but to
our knowledge has not.

Sensitivity analysis

+ Random testing treats the pro-
gram as a single, monolithic black-box.
Sensitivity analysis examines the source
code location by location.

+ Random testing requires an ora-
cle to determine correctness.
Sensitivity analysis requires no oracle
because it does not judge Correctness.

4 Random testing involves analyz-
ing the possibility that there are no
faults. Sensitivity analysis assumes that

Although a program’s
one fault exists.

true probibility- of Tailwe,
SENSITIVITY conditioned on an input

ing you need to gain a ANALYSIS DOES distribution, is a single fixed
value, the exact value is I NOT REQUIRE unknown. For that reason,

lets you determine how
much system-level test-

certain level of confi-
dence that faults are not

in our approach to combine
the two techniques, we treat
the probability of failure as extremelv low testabili-

hiding. It helps identify
regions of code with

T, which require addi- AUTOMATED a random variable 0 and
tional uni t tes t ing o r estimate a Drobability density
other ver i f icat ionand
validation resources. Additional bene-
fits are possible with slight modifica-
tions to the sensitivity-analysis algo-
rithms, which we describe in detail
elsewhere.6 Such benefits include
increased fault tolerance and
improved safety assessment.

We believe the results of our exper-
iments’,’ are sufficient to motivate
additional research and use with this
technique. Although we cannot guar-
antee that you can use it to assess relia-
bility with the precision required for
safety-critical software, we believe it is
premature to dismiss this possibility.

COMBINING TECHNMUES

If software testability produces
accurate predictions, then you should
be able to combine random black-box
testing with sensitivity analysis to
assess reliability more precisely than is
possible with black-box testing alone.
Both random black-box testing and
sensitivity analysis gather information
about an estimated probability of fail-
ure. However, the two techniques gen-
erate information in distinct ways:

1

I E E E S O F T W A R E

finction for 0, conditioned
3n an input distribution. A pdf for
lome domain defines the likelihood
that any element in the domain is cho-
sen. Here we are concerned with pre-
dicting a pdf for 0 using both black-
box testing and sensitivity analysis.
The pdf in Figure Za, pdf,, transforms
the number of random tests executed
without discovering a failure into
information about the likely reliability
of the software. The pdf in Figure Zb,
pdfs, transforms the sensitivity analysis
a t each program location into informa-
tion about the possible size of a single
fault somewhere in the program. The
prediction of pdfs is conditioned on the
same input distribution as pdf, but pdfs
is also conditioned on the assumption
that the program contains exactly one
fault, and that this fault is equally likely
to be at any location in the program.

In Figures Za and Zb, for each hori-
zontal location 8, the height of the
curve indicates the estimated probabil-
ity that the program’s true probability
of failure is less than 8. In Figure Za,
we assume that the testing has uncov-
ered no failures. As the number of tests
increases, we expect probabilities of
failure near 0.0 to be more likely and

2 5

those closer to 1.0 to be less likely. Of
course after only one test that produces
the correct output, Pr 8 = 1.0 = 0.0.
Details about deriving an estimated pdf
for 0, given many random tests, are
provided elsewhere.8

As Figure 2a shows, we mark inter-
val estimates for each estimayd pdf. If
the interval between 0.0 and 8 includes
90 percent of the area under the esti-
mated pdf, then according to random
testing the aEtual probability of failure
is less than 8 with a confidence of 90

reliability (or correctness). Figure 2a
suggests that if there is a fault, it is
likely to induce a small probability of
failure; Figure 2b suggests that tiny
impact faults (those that cause the pro-
gram to fail with probabilities less than
$) are unlikely.

W e now attempt to quantify the
meaning of the two estimated pdfs
taken together. Hamlet has derived an
equation to determine what he calls
probable correcme~s.~ When T tests have
been executed and no failures have

percent. Similarly, if the interval in
Fimre 2b includes 10 Dercent of the = pr(B <_ 6) I - - &

occurred, then

(1) ”
area under the estimated pdf, then
according to sensitivity analysis, if a
fault exists, there is a 90 percent confi-
dence that the probability of failure is
greater than 9.

Testing is unlikely to find a fault
that induces a near-zero probability of
failure. Locations that have sensitivity
estimates very close to zero are trou-
bling in an application that demands
extreme reliability. However, a fault
that induces a probability of failure of
exactly 0 is technically not a fault a t all
- no failures will be observed with
such a fault.

If there are no faults in a program,
then the true probability of failure is 0
(8 = 0.0), and we have achieved ultra-

where C is probable correctness, 8 is
the true probability of failure, 6 issome
approximation of 8, and 0 < 8 5 1.
(Hamlet calls C a measure of probable
correctness, but it would be called a
Confidence in correctness if the equations
were cast in a traditional hypothesk
test.) 1 - C is the likelihood that 8 > 8,
meaning that we l p v e been fooled i p o
thinking that 8 5 8, when really 8 > 8.

Let y represent the impact caused to
the true probability of failure by the
smallest fault in the program; then y is
the smallest possible nonzero probabil-
ity of failure for the program if we
removed all other independent faults.
If there are other faults, y < 8. y is

assumed to be unknown. Let repre-
sent the prediction of y from sensitivity
analysis according to our code; the
testing distribution, D; and the fault
classes that sensitivity analysis simulat-
ed. Note that one of the following situ-
ations is true, but we cannot know
which it is: $ > yor yr 9.

After testing T times and finding no
failures, for any p, we have confidence
C ’:

C ’ = P r (0 < $ 4 2 l - (l - $) T (2)

Given that actual failure probabili-
ties in the interval (0, 9) are unlikely,
our confidence that 8 = 0.0 is just

p7ie = 0.0) 2 1 - [P ~ (B 2 9) +
Prir < $11 (3)

where P r (y < 9) is the probability that
we failed to correctly assess the mini-
mum probability of failure induced by
any fault in our program from the fault
classes that we simulated. (Assessing
P?(y < $), which is outside the scope of
this article, requires two additional
probabilities: the probability of an
actual fault causing a lower impact to
the actual failure probability than ;,
and the probability that the order of
magnitude of 9 is too precise for the
number of input values used in deter-
mining it, which is a statistical approxi-

Figure 2. (A) The mean o f the estimated p d h curve, 8, is an estimate of the probability o f failure. (B)
the minimum probability of failure using sensitivity analysis.

is a prediction of

2 6 M A Y 1 9 9 5

mation error. This problem is partially
formalized elsewhere.") Pr(y < $) is a
function of the fault classes that were
simulated and the sample size of test
cases from D that were used during
sensitivity analysis. There could be a
fault in our program from a fault class
not simulated that has a smaller impact
on y than the fault classes we did con-
sider.

T o better understand equation 3,
assume that we have tested T times and
found no errors. Assume further that
sensitivity analysis has selected $ as the
smallest probability of failure induced
by any of the faults it simulated. W e
use $ as a reference point for establish-
ing a confidence in this software.
Trivially,

1 = p r (e = o) + p r (o < e < +) +
p(e 2 +) --f pr(e = 0)

p(e 2 +)
= i - ~ r (o < e < +) -

Thus we can estimate the probabili-
ty that the program is correct by esti-
mating Pr(0 < 8 < $) by sensitivity
analysis and by estimating Pr(8 2 9)
using Hamlet's probable correctness
equation and T.

Th,e goal of this squeeze play is to
push 8 toward $ in Figure 2 when Ti;
fixed and confidence is high." As e
approaches or exceeds $, we can be
increasingly confident that the soft-
ware is correct. As an example of
equation 3, suppose we have a pro-
gram with three independent faults,
with impacts to 8 of 0.0001, 0.00001,
and 0.000001. In this situation, 8 =
0.000111, and y = 0.000001. Suppose $
= 0.000015. In this situation, 9 > but
6 > 9. If C' is fixed close to 1.0 (mean-
ing that the T we will try is large
enough with respect to $), the likeli-
hood that the program will fail at least
once in T tests is also close to 1.0;
hence, we are unlikely to be able to
apply equation 3 because a failure
should occur.

Now suppose that we remove the
faults with failure probabilities of
0.0001 and 0.00001 after observing
one or more failures, and when we

)erform sensitivity analysis again on
he modified program, 8 is still
).000015. (In this program, we now
lave a single fault, so y = 8 =
).000001.) Again we will test this code
Ttimes to fix C'close to 1.0. Because 8
: $, Pr(y < $) = 1.0 and Pr(8 = 0.0) =
1.0. Given that we cannot know the
,robability of a true fault causing a
ower impact to the actual failure prob-
ibility than $ (without knowing where
ill the faults are), the best that we can
;ay about a confidence in absolute cor-
-ectness (based on T successful tests
ind $) is that we have confidence C"
:hat the true probability of failure is
cero:

r2 1 - ~ r (o < e s +) - p r (0 > +)
+ (1 - 9,7 = 1 - [2+"E:

where T' is the number of test cases
used during sensitivity analysis and E is
I small fudge factor subtracted from $
to allow for imprecision during sensi-
tivity analysis.

This is one method for combining
testability analysis with testing results
to sharpen an estimate of the true
probability of failure. This use of testa-
bility measurement is essentially a
cleanup operation - a method to
assess if software has achieved a desired
level of reliability. W e believe that
testability assessment is more useful
earlier in the development of software.
This idea is dramatized in Table 2,
which gives you a feeling for the cost of
testing to different levels of confidence,
given different degrees of testability.

ur research suggests that software 0 testability clarifies a characteristic
of programs that has largely been
ignored. W e think that testability
offers significant insights that are use-
ful during design, testing, and reliabil-
ity assessment. In conjunction with
existing testing and formal verification
methods, testability holds promise for
quantitative improvement in statisti-
cally verified software quality.

W e are particularly interested in
designing software to increase its testa-

..-

7
44

458
298

460,514
46,05 1,699

693,147,18 1
2,302,585,093
2,995,732,273

0.10
0.10
0.01
0.01
1 0-5
10-7
10-9

10-9
10-9

C'
0.50
0.99
0.00
0.95
0.99
0.99
0.50
0.90
0.95

ility. Although the existence of ax
,per bound on testability is solely ou!
mjecture, our research using sensitiv.
y analysis and studying software'!
:ndency to not reveal faults durinl
:sting suggests that such a bounc
usts. W e challenge software testinl
searchers to consider this.

A given piece of software will o
ill not hide a given fault from test
tg. We have found tha t it is possibli
) examine this code characteristic -
lftware testability - without know
ig if a particular fault exists in tha
iftware, and without reference tc
xrectness. Because it does not rel:
n correctness, software testabilir
ives a new perspective on code devel
pment.

W e have briefly described on '
ynamic technique, software sensitivir
nalysis, for predicting software testa
ility. Sensitivity analysis has yieldel
romising results in several experi
ients;' research and practical applica
ion of this technique continue
'erhaps other more effective or mor
ffkient testability measurement tech
iques will be discovered, but whateve
xhniques are employed to measur
stability, we are convinced that thi
iherent software characteristic wil
ecome an important factor to consid
r during software development an
ssessment. I

I E E E S O F T W A R E 2 7

ACKNOWLEDGMENTS

article.

Resident Research Associateship and NASA Grant NAG-1-884.

We thank Christoph Michael and Sue Brilliant for reviewing earlier drafts of this

This work was supported in part by a National Research Council NASA-Langley

REFERENCES
1. R. Butler and G. Finelli, “The Infeasibility of Experimental Quantification of Life-Critical

2. N. Berglund, “Level-Sensitive Scan Design Tests Chips, Boards, System,” E l e m i c r , Mar. 15,

3. J. Voas, “Factors That Affect Software Testability,” Proc. Pmf?cNurthmSo@arr Qualq Cmf,

4. B. Marick, “Two Experiments in Software Testhg,” Tech. Report UIUCDCS-R-90-1644, CS

5. J. Voas, “PIE: A Dynamic Failure-Based Technique,” IEEE Trans. Sofcware Eng., Aug. 1992, pp.

6. J. Voas and K. Miller, “Dynamic Testability Analysis for Assessing Fault Tolerance,” High lntegriiy

7. J. Voas, K. Miller, and J. Payne, “A Comparison of a Dynamic Software Testability Memc to

Software Reliability,” Prm. SIGSoft, ACM Press, N.Y., 1991, pp. 66-76.

1979, pp. 108-110.

PNSQC, Portland, 1991, pp. 235-247.

Dept., University of Illinois a t Urbana-Champaign, Nov. 1990.

717-727.

SyffmJ.:,Vol. 1,No. 2,pp. 171-178.

Static Cyclomatic Complexity,” Proc. Cmf Sofcware Quality Management, Computational
Mechanics Publications, South Hampton, UK, July 1994, pp. 43 1-445.

T r a m Sofcware Eng., Jan. 1992, pp. 33-44.
8. K. Miller et al., “Estimating the Probability of Failure When Testing Reveals No Failures,” IEEE

9. R. Hamlet, “Probable Correcmess Theory,” I n f m t i u n Proresing Leaerr, June 1987, pp. 17-25.
10. J. Voas, C. Michael, and K. Miller, “Confidently Assessing a Zero Probability of Software Failure,”

Pmc. Cunf Computer Sajity, Reliability, and Semrig, Springer-Verlag, London, 1993, pp. 197-206.
11. R. Hamlet and J. Voas, “Faults on Its Sleeve: Amplifying Software Reliability Assessment,” Proc.

SIGSoj, ACM Press, N.Y., June 1993, pp. 89-98.

Jetky M. Voas is vice
president of Reliable
Software Technologies,
where he is currently
prinicpal investigator on
basic research grants with
NASA, the National
Institute of Standards and
Technology, and the
National Science
Foundation. His research

interests include assessing and improving software
fault tolerance and measuring software dependabili-
ty and safety. He is coauthor of Sofcware Asrersment:
Reliability, Sajiiy, Te.mbility aohn Wiley & Sons, to
be published).

Voas received a BS in computer engineering
from Tulane University and an MS and a PhD in
computer science from the College of William and
Mary. He is a member of the IEEE.

Keith W. Miller is an
associate professor of com-
puter science at Sangamon
State University. His
research interests include
software engineering, soft-
ware reliability, and com-
puter ethics. His work has
included consulting for
NASA Langley Research
Center, Computer

Sciences Corp., and Bell Atlantic. He is also pro-
gram chair for the 1995 National Educational
Computing Conference.

Miller received a PhD in computer science from
the University of Iowa. He is a member of ACM and
the IEEE.

Address questions about this article to Voas a t Reliable Software Technologies, 2 15 15 Ridgetop Cir.,
Sterling, VA 20166; jmvoas@rstcorp.com.

M A Y 1995

mailto:jmvoas@rstcorp.com

