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concerned with finding incorrect 
code. Instead, this view looks at 
the probability that the code will 
fiil i f i t  isfiulty. The authors 
present the benefits of their 
approach, describe how to design 
for it, and show how to measure 
testability through sensitivity 
analysis. 
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often the last defense against disasters 
caused by faulty software development. 
When lives and fortunes depend on 
software, software quality and its verifi- 
cation demand increased attention. As 
software begins to replace human deci- 
sionmakers, a fundamental concern is 
whether a machine will be able to per- 
form the tasks with the same level of 
precision as a skilled person. The  relia- 
bility of an automated system must be 
high enough to avoid a catastrophe. 

But how do you determine that crit- 
ical automated systems are acceptably 
safe and reliable? In this article, we pre- 
sent a new view of verification and offer 
techniques that will help developers 
make this assessment. Our view, whch 
we label s o f i a r e  testability, looks at  
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dynamic behavior, not just syntax. This 
differs from traditional verification and 
testability views, as the box on pp. 18- 
19 describes. 

REUABlllTY PUZZLE 

Every system has a true (or fixed) 
reliability that is generally unknown. 
Software testability, software testing, 
and formal verification are three pieces 
of the reliability puzzle, which devel- 
opers must complete to get a picture of 
the software’s true reliability. Each of 
the three puzzle pieces offers a unique 
bit of information about software qual- 
ity. The  goal is to combine all three. 
Testability analysis is related to but 
distinct from both software testing and 
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VERIFICATION AND TESTABILITY VIEWS 
O u r  views on both verification and testability differ 

from some of the more widely accepted views. 

Verification. The IEEE Standard Glo.r.raly oj’Sofimwr 
Exgineel-ing Te?minology‘ defines software verification as 
the “process of evaluating a system or component to 
determine whether the products of a given development 
phase satisfy the conditions imposed at  the start of that 
phase.” 

Restated, software verification is the process that 
assesses the software’s degree of acceptability, which is 
judged according to the specification. Software verifica- 
tion is broadly divided into two classes: 

+ Dynamic sojbare testing is the process of executing 
the software repeatedly until a confidence is gained either 
that the software is correct and has no more defects, 
referred to as probable correctness,’ or that the software has 
a high enough level of acceptability. Testing can be either 
white-box or black-box. White-box testing bases its selec- 
tion of test cases on the code itself; black-box testing bases 
its selection on some description of the legal input 
domain. White-box testing gives you better coverage 
because it exercises larger regions, but white-box tech- 

niques are often helpless against classes of taults like miss- 
ing code, which black-box testing can catch. 

+ Fominl rerifiixtion typically involves some level of sta- 
tic theorem-proving -the mathematical process of show- 
ing that the function computed by a program matches the 
function specified. No program executions occur in this 
process, and the result is a binary value: either the function 
computed by the program matches the specification or it 
does not. Problems arise in this rigorous process because 
of questions about program termination and the correct- 
ness of the rigorous process itself (who will prove the 
proof?). Furthermore, the process of completing such a 
proof can be more difficult than writing the program itself. 

In this article, we describe a different type of verifica- 
tion that can complement both dynamic testing and static 
theorem-proving. 

Testability. The IEEE Standard Glossary of Sojhure 
Engineering Terminology’ defines testability as 

“(I) the degree to which a system or cmponent facilitates 
the establishent of test criteria and the perfmmance of 
tests t o  determine whether those criteria have been met, 
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formal verification, which makes it a 
good complement to the other two 
pieces. Like software testing, testability 
analysis requires empirical work to cre- 
ate estimates. Unlike testing, however, 
testability analysis does not require an 
oracle - a program that performs the 
same functions as the software being 
developed. Thus, testing can reveal 
faults, while testability cannot, but 
testability can suggest places where 
faults can hide from testing, which 
testing cannot do. Testability comple- 
ments formal verification by providing 
empirical evidence of behavior, whch 
formal verification cannot do. 

Testability information cannot 
replace testing and formal verification; 
but neither should developers rely 
exclusively on testing and formal veri- 
fication. To be highly reliable, the 
software must have high testability, 
undergone enormous amounts of suc- 
cessful testing, and experienced formal 
verification. (In this article, we assume 
that “highly reliable” means fail- 
ures in a 10-hour period, although 
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testing alone can never demonstrate 
this degree of precision.’) 

To illustrate how the three pieces fit 
together, consider a system that has 50 
modules. Each module is tested with 
100 random tests, and all modules pass 
the tests. In addition, the system passes 
100 random tests. Ten of the modules, 
judged the most intricate and critical, 
are subjected to formal verification at 
various points in their development. 
Testability analysis reveals that five 
modules are highly insensitive to testing 
- testing is unlikely to find faults in 
these modules if faults exist. Only one 
of these five has been formally verified. 
At this point, verification resources 
should concentrate on the four modules 
that have low testability and have not 
been formally verified; they are the 
most vulnerable to hidden faults. 

As another example, consider a sys- 
tem built entirely of formally verified 
modules. Using a development 
approach inspired by Cleanroom, the 
developers wait until after system inte- 
gration to do random system testing. 

During this testing, some faults are dis- 
covered and the code is repaired. 
Regression testing and new random 
tests reveal no more failures, but testa- 
bility analysis identifies several places in 
the code where testing is highly unlikely 
to reveal faults. These pieces of code 
are subjected to further formal analysis, 
and nonrandom tests are devised to 
exercise these sections more extensively. 

HOW TESTABILITY WORKS 

Ow focus here is on one part of the 
puzzle, testability - how to design for it 
and how to measure the degree to which 
you have achieved it. To better illusmate 
what we mean by software testability, 
we offer two simple analogies. 

The  first shows how testability can 
enhance testing. Suppose software faults 
were gold. Software testing would be 
the actual mining process; software 
testability would be a geologist’s survey 
before mining begins. The  geologist 
does not actually dig for the gold, but 
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and (2) the degree t o  which a requirement is stated in 
t e r n  that permit establishment of test criteria and pefor- 
mance of tests to determine vjhether those rriteria have 
been met.” 

According to this definition, to determine the degree you 
must have a test criteria. Consequently, testability is simply 
a measure of how hard it is to satisfy a particular testing 
goal, such as a coverage percentage or complete fault eradi- 
cation. Testability requires an input distribution (commonly 
called a user profile), but thls requirement is not unique to 
testability; any statistical prediction of semantic behavior 
during software operation must include an assumption 
about the distributions of inputs during operation.* 

Our definition of software testability focuses on the proba- 
bility that a piece of software will fail on its next execution 
during testing (with a pamcular assumed input distribution) if 
the software includes a fault. By contrast, the standard IEEE 
definition focuses on assessing if the U 0  pairs are correct 

Computer science researchers have spent years developing 
sohare-reliability models M answer the question, What is the 
probability that this code is faulty? Soha re  testability exam- 
ines a &&rent behavioral characteristic: the likelihood that the 

code can fail $something in the code is incorrect. It asks the ques- 
tion, What is the probability this code will fail if it is hulty? 

Our testability differs from traditional views in another 
sense: In the past, software testability has been used infor- 
mally to discuss the ease with which some input selection cri- 
teria can be satisfied during testing. For example, if a tester 
wanted full branch coverage during testing and found it diffi- 
cult to select inputs that cover more than half the branches, 
the software would be classified as having poor testability. 

In contrast, our testability is not concerned only with 
finding sets of inputs that satisfy coverage goals; it is t y n g  
to quantify the probability that a particular type of testing 
will cause existing faults to fail during testing. We focus our 
definition of testability on the semantics of the software, 
how it will behave when it contains a fault. This is different 
from asking whether it facilitates coverage or is correct. 
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rather establishes the likelihood that 
digging at a particular spot would be 
rewarding. At one location, the geolo- 
gist might say, “This valley may or may 
not have gold, but if it does, it will be in 
the top 50 feet and all over the valley.” 
At another location, the geologist might 
say, “If you don’t find gold in the first 
10 feet on this plateau, there is no gold. 
However, on the next plateau you will 
have to dig 100 feet before you can be 
sure there is no gold.” Thus, testability 
provides some guidance for testing, 
which is much better than testing blind. 
It can suggest the testing intensity (as 
the geologist suggested a digging depth) 
or estimate how difficult it will be to 
detect a fault at a particular location. If 
after testing to that degree of difficulty, 
you observe no failures, you can be rea- 
sonably sure (in an informal, not a statis- 
tical sense) that the program is correct. 

T h e  second analogy shows that 
testability can give you confidence of 
correctness in fewer tests (than you 
would conduct without it) ifyou are 
sure the software will not hide faults. 

I E E E  S O F T W A R E  

Imagine you are writing a program to 
scan black-and-white satellite photos, 
and you are looking for evidence of a 
large barge. If you are sure that the 
barge will appear as a black rectangle, 
and that any barge will cover an image 
area of at least 10 by 20 pixels, you can 
have the program use t echques  that 
it could not use if you had not estab- 
lished this barge size ahead of time. 

For example, assume the original 
image has been subsampled so that 
each pixel in the new image is the aver- 
age of a five-by-five square of pixels in 
the original image. You could scan the 
subsampled image 2 5 times more 
quickly than the original; with the 
established barge size, you could still 
detect any barge in the lower resolu- 
tion image. (The shape of a suspected 
barge could be determined by more 
detailed examination of the original 
image at higher resolution.) But if the 
established barge size was smaller, the 
low-resolution image might hide the 
barge inside of one of its averaged pix- 
els. Thus, there is a direct relationship 

between the minimum barge size and 
the amount of speedup that can be 
accomplished by subsampling. 

You can view the search for a barge 
as a search for faults in a program, but 
instead of examining pixel groups, you 
are examining the output from test- 
case executions. The  barge was large 
enough to see at low resolution, so you 
could use a coarser grid to locate it. If a 
fault will always cause a larger propor- 
tion of inputs to fail during testing, 
you will need fewer random tests to 
reveal the fault. If we can guarantee 
that any fault in a program will cause 
the program to fail for a sufficiently 
large propomon of tests, then we can 
reduce the number of tests necessary 
to be confident that no faults exist. 

No te  that in these analogies we 
describe random testing, which is what 
we have emphasized in  our  work 
because of its attractive statistical prop- 
erties. However, software testability 
could be defined for different types of 
testing, such as dataflow testing and 
mutation testing. 
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DESIGNING FOR TESTABILITY 

Testability’s goal is to assess soft- 
ware accurately enough to demonstrate 
whether or not it has high quality. If 
you use black-box testing alone to  
assess software, an intractable amount 
of testing is required to establish a very 
small probability of failure. For exam- 
ple, to assess a probability 
of failure that is less than 

ing scheme you use, but software 
design for testability can improve the 
chances of incorporating at least one of 
these features. Moreover, designing 
software for testability also prevents 
the too little, too late problem: If the 
code that exists at the verification stage 
is flawed because of incorrect or ineffi- 
cient design decisions, often little can 

be done to undo the mis- 
takes without enormous 

(e 5 failures per S O W A R E  
the true probability of TESTABILITY IS 
failure) with a confidence RELATED TO 
mately 4.6 billion success- HARDWARE 

test, where e represents 

of 99 percent, approxi- 

ful executions (tests 
according to  the input I OBSERVABILITY. 

additional costs. In inte- 
grated-circuit design, 
designing for testability has 
long been viewed as a nec- 
essary step in the overall 
process. I C  design engi- 
neers have a notion - 
observability - that  is 

distributign) are needed! 
The practical problems of such testing 
are obvious. Furthermore, if during 
random black-box testing the software 
does fail, it must be b e d ,  and random 
black-box testing must be restarted. In 
other words, you must ignore all previ- 
ous successful executions and redo the 
testing. Statistics show that whenever 
you write code, whether you add func- 
tionality or b old code, 30 percent of 
that code will have new faults. Clearly, 
we need to  seek new methods that 
increase testing effectiveness. 

There are two ways to reduce the 
number of required tests: 

+ Select tests that have a greater 
ability to reveal faults. 

+ Design software that  has a 
greater ability to fail when faults do 
exist (design for testability). 

We favor the second strategy, but it 
imposes several criteria on program 
design: 

+ More of the code must be exer- 
cised for each input. 

+ Programs must contain constructs 
that are likely to cause the state of the 
program to become incorrect if the 
constructs are themselves incorrect. 

Programs must be able to propa- 
gate incorrect states into software fail- 
ures. 

How many and to what extent these 
criteria are met depends on what test- 

closely related to software 
testability. Observability is the ability 
to view the value of a particular node 
embedded in a circuit. In hardware, 
the principal obstacle in testing large- 
scale ICs is the inaccessibility of the 
internal signals.’ 

One method of increasing observ- 
ability is to  increase the chip’s pin 
count, letting the extra pins carry out 
additional internal signals that can be 
checked during testing. In software, 
when modules contain local variables, 
you lose the ability to see information 
in the local variables during functional 
testing - somedung that will become 
a major issue for object-oriented sys- 
tems. T o  remedy this, you can apply a 
notion similar to increasing the pin 
count in a chip: you can increase the 
amount of data-state information that 
is checked during unit testing. 

Ideally, a design process begins with 
a (functional description, input dlstrib- 
ution) pair that specifies the intended 
software. We believe that a theoretical 
upper bound exists on the testability 
that can be achieved for a given pair. If 
we can change the functional descrip- 
tion to include more internal informa- 
tion, we should be able to increase that 
upper bound. 

Idonnation loss. Increasing this infor- 
mation helps compensate for the loss of 

nformation that occurs when internal 
nformation computed by a program is 
l o t  communicated in the program’s 
mtput. Information loss increases the 
potential that data-state errors will be 
zanceled because the lost information 
may have contained evidence of incor- 
rect data states. Therefore, information 
loss decreases testability. Information 
loss falls into one of two broad classes: 
implicit and explicit. 

Imp/id informorion loa. Implicit informa- 
tion loss occurs when two or more dif- 
ferent incoming parameters are pre- 
sented to a user-defined function or a 
built-in operator and produce the 
Same result. 

T o  illustrate, consider the case in 
which you have an integer-division 
computation, a := a div 2, and two 
incoming values for a, 5 and 4. T h e  
result for both is that a is assigned 2. In 
the same example, suppose a user- 
defined function takes in two integer 
parameters and produces one Boolean 
parameter; many integer-2 tuples are 
possible, but only 0 or 1 result. In con- 
trast, consider the computation a := a + 
1, in which there is no implicit infor- 
mation loss. 

In  both these examples, you can 
predict that implicit information loss 
will occur by statically analyzing the 
code. If a specification states that 10 
floating-point variables are to be input 
to an implementation, and two Boole- 
an variables are to contain the imple- 
mentation’s output, then you know 
that there will likely be some implicit 
information loss. 

For  more specific estimates of 
implicit information loss, you can look 
at the program’s specification. If a spec- 
ification is written with enough infor- 
mation about its domain and range, for 
example, it can be used to estimate the 
degree of implicit information loss that 
will occur. In our design-for-testability 
strategy, we use a specification metric, 
the domain-to-range ratio, to help devel- 
opers obtain this information. W e  
emphasize, however, that a specifica- 
tion’s DRR suggests only part of the 
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implicit information loss that may 
occur, and it will not always be dis- 
cernible if a specification does not have 
enough information about the domain 
and range. It is also suitable for making 
only TOZ& predictions about the degree 
of loss. You must inspect the code to 
get the necessary additional informa- 
tion for a more solid estimate. 

The  DRR is useful because it Fives 

greater than p, faults are more likely to 
remain undetected (if any exist) during 
testing than when a equals p.' Because 
evidence of incorrect data states is not 

degree of implicit information loss - 
Brian Marick noted that  faults in 
Boolean functions (where the cardinal- 
ity of the range is 2)  were more apt to 

v 

important information about possible 
testability problems in the code 
required to implement the specification 
and can help developers focus analysis 
and testing resources on the parts of 
the code that most need them. T h e  
DRR is the ratio of the cardinalitv of 

in the data state that are not lost and 
are eventually released as output. As 
the probability of observing a failure 
decreases, the probability of undetected 
faults increases. 

Another research report presents a 
similar conclusion about the relation- 

the specification's domain, denoted by 
a, to the cardinality of its range, denot- 
ed by p. Generally, as the DRR 
increases, the potential for implicit 

ship of faults remaining undetected 
and the type of function containing the 
fault.+ While performing mutation 
testing experiments with Boolean func- 

relation between implicit information 
loss and testability. 

Implicit information loss is c o n -  
mon in many of the built-in operators 
of mod ern pro gr a In In i n g 1 an gu a g e s. 
Operators such as div, mod, and trunc 
have high DRRs. 'Table 1 contains a 
set  of functions with generalized 
degrees of implicit information loss 
and DRRs, where (for simplicity) b is 
assumed to be a constant, and infinity 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
- 
~ 
~ 

Function 

0 i f a < 0  
a otherwise 

f ( a )  = a+l 

f ( a )  = a mod b 

f ( a )  = a div b 

f ( a )  = trunc(a) 

f ( a )  = round(a) 

f(4 = sq+> 

f(a) = 5qrt(a) 

f ( a )  = a/b 

f ( a )  = a - 1 

f(a> = even@) 

f ( a )  = sin@) 

f(a) = odd@) 

f ( a )  = not@) 

f ( a A  = (a)or(b) 

Implicit Information Loss 

1 ~ ~~~~~~ 

Yes 

no 1 Yes 

yes 

Yes 
I yes 

no 

no I 

no 

no I 

Comment 
~~ ~ ~~ 

a is integer 

a is integer 

I testability decreases as b decreases, b f 0 

testability decreases as 0 increases, h f 0 

1 a is real 

a is real 

1 a is real 

a is real, a 2 0 

I aisreal,b#O 

' a is integer 

a is integer 

a is integer (degrees), N 2 0 

1 aisinteger 

a is Boolean 

I a, b are Boolean 

I E E E  S O F T W A R E  21 



represents the cardinality of fixed- 
length number representations.  
Infinities with the subscript R repre- 
sent the cardinalities of real numbers; 
infinities with the subscript I represent 
the cardinalities of integers. 

You can also predict information 
loss from a description of the function 
to be programmed. A function classi- 
fied as having a “yes” for implicit 
information loss is more likely to  
receive an altered incoming parameter 
and still produce identical output as if 
it had received the original incoming 
parameter. A function classified as hav- 
ing a “no” for implicit information loss 
is likely to produce an altered output if 
given an altered incoming parameter. 
In other words, a “yes” suggests the 
probability that data-state errors would 
be canceled; a “no” suggests tha t  they 
would not. 

Figure 1 illustrates the relationship 
between implicit information loss and 
the DRR. Sixteen a,b input pairs are 
presented to two functions: one per- 
forms real division; the other, integer 
division. For the real-division function, 
there are 16 unique outputs; for the 
integer-division function there is one. 
This supports the DRR classification 
in Table 1: Forfla) = a/b (the real-divi- 
sion function), there is likely to be no 
implicit information loss. Forfla) = a 
div b (the integer-division function), 
there is likely to be implicit informa- 
tion loss. 

Explicit informotion loss. Explicit informa- 
tion loss occurs when variables are not 
validated either during execution (by a 
self-test) or at the end of execution as 
output. Explicit information loss fre- 
quently occurs as a result of infomation 

Figure 1. How implicit information loss relates to  the domain-to-range ratio. 
There are I 6  values coming in: four values for variable a fiom domain A and 

four values for variable b fiom domain B. The cross product for  (a,b) is 16 two-  
tuples. For a/b (real-number division), there are 16 results (no infomation loss), 
but for  a div b (integer division), there are only two.  You can predict implicit 
information loss by examining the type of function. Integer functions tend to  incur 
a loss; real-numberhnctions do not. 

hiding, although other factors can con- 
tribute to it. Information hiding is a 
design philosophy that does not allow 
a module to release information that 
other modules could potentially mis- 
use. This technique is widely accepted 
as good structured-programming prac- 
tice, and we advocate structured pro- 
gramming, but hiding internal infor- 
mation is not good for testability at the 
system level, because the data in the 
local variables cannot be viewed in the 
search for faults. 

Explicit information loss is harder to 
find early in development because it 
cannot be predicted by a DRR. T h e  
ability to find it depends more on how 
the software is designed, and less on the 
specification’s I/O pairs. You can 
observe explicit information loss 
through static code inspection, and pos- 
sibly by reviewing the design document 
if it is sufficiently detailed. The docu- 
ment can reveal things like the number 
of local variables or the number of 
times a variable is redefined as a new 
value. For example, a := a + 1 may be 
redefined as a := a mod 2 and again as a 
:= function (b,c,d,e,fl. This redefinition is 
a form of explicit information loss. 

Design heuristics. There are several 
ways to  minimize the detrimental  
effects of both implicit and explicit 
information loss on testability, includ- 
ing decomposing the specification to 
isolate implicit information loss, mini- 
mizing the reuse of variables to reduce 
implicit information loss, and increas- 
ing the use of out parameters to reduce 
explicit information loss. 

Specificofion decomposition. A major advan- 
tage of using the DRR to guide devel- 
opment is that it is available very early 
in the life cycle. Although the DRR of 
a specification cannot be modified 
without changing the specification 
itself, there are ways to decompose a 
specification to reduce the potential 
that data-state errors will be canceled 
across modules. 

During specification decomposi- 
tion, you have hands-on control of the 
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DRR of each subfunction. With this, 
you gain an intuitive feeling for how 
much testing is needed to attain a cer- 
tain confidence that a module is propa- 
gating data-state errors. The  rule of 
thumb that guides this intuition is “the 
greater the DRR, the more testing is 
needed to overcome the likelihood that 
data-state errors will be canceled.” 

You can also decompose a specifica- 
tion in a manner that classifies the pro- 
gram’s modules as having a high or low 
DRR. By isolating modules with a low 
DRR - those that are more likely to 
propagate incoming data-state errors 
during program testing - you can shift 
testing and analysis resources to mod- 
ules that are less likely to do that. 

Minimizotion o f  vorioble reuse. As we 
demonstrated earlier, a computation 
such as a := sqr(a) destroys the original 
value of a, and although you can take 
the square root after this computation 
and retrieve the absolute value that a 
had, you don’t know if it is positive or 
negative. Minimizing variable reuse is 
one way to try to decrease the amount 
of implicit information loss. 

T o  minimize variable reuse, you 
must either create more complex 
expressions or declare more variables. 
If you declare more variables, you will 
need more memory. If you use more 
complex expressions, you will reduce 
the testability when a single expression 
represents what were previously many 
intermediate values. 

Although some literature supports 
programming languages based on few 
or  no variables, programs written in 
such languages will almost certainly suf- 
fer from low testability. For this reason, 
we advocate using more variables, and 
thus mahng more variables available 
during testing. Clearly, adding more 
variables can decrease performance. 
However, you can gain a significant 
payoff in increased testabihty for only a 
minor cost in performance. Moreover, 
performance costs are machine-orient- 
ed, and the cost of machine resources is 
decreasing. Testability costs, on the 
other hand, are people-oriented, and 

iuman resources are becoming increas- 
ngly expensive. 

lntreosed use of  out porometers. As we 
iescribed earlier, explicit information 
loss caused by local variables parallels 
h e  notion of low observability in ICs. 
Because explicit information loss sug- 
gests lower testability, we prefer, when 
possible, to lessen the amount of explic- 
it information loss that occurs during 
testing. Even if you cannot actually 
reduce the loss, the reduction strategies 
we give here are still 
wort% following because 
they tell you the location 
of modules with the great- 
est potential for data-state 
error cancellation before 
validation begins. 

One approach to lim- 
iting the amount of 
explicit information loss 
is to insert w r i t e  state- 

+ The people formalizing the spec- 
ification are forced to produce detailed 
information about the states of the 
internal computations. This should 
increase the likelihood that the code is 
written correctly, and i t  forces the 
code to test itself. 

+ The dimensionality of the range 
of the intended function is increased, 
which may increase the cardinality of 
the range, thus reducing information 
loss. 

In advocating these approaches, we 
are no t  repudiating the 
practice of information 

WE MUST 
VALIDATE MORE 
INTERNAL 
IN FORMATION 
TO INCREASE 
TESTABILITY. 

ments to  print internal 
information. This infor- 
mation must then be checked for cor- 
rectness during each test. A second 
approach is to increase the amount of 
output that these subspecifications 
return by treating local variables as 
out parameters during testing. A third 
approach inserts self-tests - called 
assertim - that are executed to check 
internal information during computa- 
tion. When the assertion encounters 
an incorrect internal computation, it 
produces a message to that effect. 

Our research suggests that asser- 
tions are particularly useful for testa- 
bility analysis. Not only can you use 
them to ensure that a particular vari- 
able is correct or in the range at some 
point during execution, but also a 
failed assemon suggests the possibility 
that previous computations (on which 
the variable definition depends) might 
be incorrect. In addition, the messages 
about incorrect computations make it 
less likely that there are hidden faults. 

These three strategies produce two 
important  results, both of which 
essentially increase the software’s 
observability: 
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hiding during design. 
However, when writing 
safety-critical software in 
particular, there  is the 
competing imperative of 
enhancing testability. 
Information not available 
during testing encourages 
undetected faults; in-  
creased output discourages 
undetected faults. An 

answer to this conflict may be to pat- 
tern software testing more closely on 
hardware testing by specifjmg special 
output variables that are specified and 
implemented specifically and exclu- 
sively for testing. 

Analysis. All the strategies proposed 
to mitigate information loss require 
additional specified information about 
the internal computations. Maybe the 
real message of our research is that 
until developers make the effort to bet- 
ter specify what must occur, even at 
the intermediate computation level, 
testabilities and assessed reliabilities 
will remain low. In other words, devel- 
opers must validate more internal infor- 
mation if they hope to  increase sojiware 
testability. T o  do this, there must be 
some way to check additional internal 
information, which means describing 
more information in the specification 
and requirements phase. If developers 
are not willing to specify these details 
at some point during this phase, they 
cannot expect to substantially improve 
reliability assessments. 
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/I SENSITIVIPI ANALYSIS 

Once you improve software testa- 
bility, there must be some way to mea- 
sure that improvement. T o  aid this 
process, we have devised a model’ that 
quantifies testability on the basis of a 
sensitivity analysis. Sensitivity analysis 
quantifies behavioral information 
about the likelihood that faults are hid- 
ing. It repeatedly executes the original 
program and mutations of its source 
code and data states using two assump- 
tions: The  single-fault assumption says 
that the program contains a single 
fault, not multiple faults distributed 
throughout the program. The  simple- 
fault  assumption says that the fault 
exists in a single location, not distrib- 
uted throughout the program, and that 
this fault is equally likely to be at any 
location in the program. The  assump- 
tion of this single, randomly located 
error is a variation on the competent 
programmer hypothesis, which main- 
tains that a competent programmer 
will write code that is 
reasonably close to being 
correct. 

The  specific purpose 
of sensitivity analysis is to 
provide information that 
suggests how small the 
program’s smallest faults 
are likely to be. With this 
prediction, you can use 
statistical methods to  
determine how much 
testing will be necessary 

observed effects from actual faults; the 
weakness is that the faults injected and 
observed are only a small set from 
what might be an infinite class of 
faults. 

For a particular location in  the 
code, sensitivity analysis estimates the 
probability of failure that would be 
induced in the program by a single 
fault. For a failure to occur and be 
observed, three things must happen: 
the fault must be executed, an incor- 
rect data state must be created (and the 
original data state becomes “infected”), 
and the incorrect state must be propa- 
gated to a discernible output. Thus, 
sensitivity analysis separates failure 
into three types of events - execution, 
infection, and propagation - and 
applies analysis algorithms to estimate 
the probability of each event. 

Sensitivity analysis is broken into 
three independent processes, each of 
which estimates the likelihood of one 
of the three events: execution analysis, 
infection analysis, and propagation 

analysis. (Although we 
describe them sequentially, 

SENSITIVITY 
ANALYSIS 
SUGGESTS 
HOW SMALL 
THE SMALLEST 
FAULTS ARE 
LIKELY TO BE. 

to deiect faults of this 
size, thus obtaining a cri- 
terion that lets you determine when to 
stop testing. 

To provide this prediction, sensitiv- 
ity analysis injects simulated faults into 
the code and estimates their effect on 
software observability. I ts  success 
depends heavily on the testing scheme 
used to take this measurement. At the 
very least, the testing scheme must 
exercise all locations. (Other qualifica- 
tions are a matter for debate.) 

The  strength of sensitivity analysis 
is that your prediction is based on 

2 4  

,. 

in a production-analysis 
system they could overlap.) 
To estimate the likelihood 
of an event, each process 
divides the number of times 
the event occurred by the 
number of attempts to force 
that event. For example, if 
the  propagation event 
occurs 10 out of 100 times, 
the propagation probability 
estimate is 0.1. 
T h e  result of sensitivity 

analysis is the estimated probability oj 
failure that would result if a particular 
location had a fault. This estimate is 
obtained by multiplying the means of 
the three estimates from the analysis 
phases. If you take the minimum over 
all three estimates and then obtain a 
product, you can obtain a bound on the 
minimum probability of failure that 
would result if thls location had a fault. 
Elsewhere, Voas formalizes the 
method to find a predicted probability 
of failure from sensitivity analysis.’ 

Execution analysis. Execution analysis 
estimates the probability of execution 
for each location by repeatedly execut- 
ing the code with inputs selected from 
an input distribution or inputs from a 
test suite. As with the analysis of ran- 
dom testing, the accuracy of execution 
analysis depends in part on how well 
you have estimated the input distribu- 
tion that will drive the software when 
it is in use. Execution analysis differs 
from random testing, however, in that 
it answers the question, “How often 
does this code get executed?” for a sin- 
gle location. Random testing answers 
the question, “IS this code correct?” for 
the entire program. 

In execution analysis, a single loca- 
tion is analyzed with respect to the 
number of test cases that execute it. 
Our experiments thus far have defined 
a location as a piece of source code that 
can change the data state (including 
YO files and the program counter). A 
location could be a single statement in 
a high-level language, one code 
instruction, o r  some intermediate 
amount of computation. For example, 
an assignment statement and an i f  
statement define one location (because 
they involve only one variable), while a 
statement read (a, b)  defines two loca- 
tions (because it involves two variables). 

Probability is determined by the 
number of times a location is executed 
relative to the total number of test cases 
run (not relative to each test case). For 
example, if 100 test cases are run and 
the location is executed in 40 of them, 
the execution probability is 0.4. 

Infection analysis. If a location con- 
tains a fault, and if the location is exe- 
cuted, the fault may make the data 
state incorrect for that input. If so, the 
data state becomes infected. T o  esti- 
mate the probability of infection, the 
infection-analysis algorithm performs a 
series of syntactic mutations on each 
location. A syntactic mutation is a 
change from the original syntax into a 
new syntax that is grammatically legal 
and has a different meaning for at least 
one input value. 
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After each mutation, the program is 
reexecuted with random inputs. As 
part of estimating the probability of 
infection, each time the monitored 
location is executed, the infection- 
analysis algorithm immediately com- 
pares the data state with the data state 
of the original (unmutated) program at 
that same point in the execution. If the 
state differs, infection has taken place. 

Propagation analysis. In this phase, the 
location in question is monitored dur- 
ing random tests. After the location is 
executed, the propagation analyzer 
changes the resulting data state by 
assigning a random value to one data 
item using a predetermined distribu- 
tion. (Research is ongoing as to the 
best distribution to use for this random 
selection.) After the data state is 
changed, the program continues exe- 
cuting until an output results. T h e  
propagation-analysis algorithm com- 
pares the output from the changed 
data state with the output that would 
have resulted without the change. If 
the outputs differ, propagation has 
occurred and a propagation probability 
can be estimated. 

Implementation. The single-fault and 
simple-fault assumptions underlying 
sensitivity analysis are admittedly 
flawed and artificially restrict fault 
classes. However, without  these 
assumptions the combinatorics of sim- 
ulating classes of distributed or multi- 
ple faults becomes intractable. 
Moreover, despite this theoretical 
weakness, empirical techniques have 
yielded impressive experimental 
results.5 

Sensitivity analysis is a new, empir- 
ical technique. The complexity of the 
processing required for sensitivitj 
analysis is quadratic in the number oj 
code locations and therefore require: 
considerable bookkeeping and execu- 
tion time. Pilot experiments in thc 
early 1990s were done using hand- 
coded syntactic mutations and onlj 
semiautomated data-state mutations 
However, because sensitivity analysi: 

’ 
1 

loes not require an oracle, it can be 
:ompletely automated for programs of 
my size, although processing time can 
be a practical limit for large programs 
malyzed in a single block. Reliable 
Software Technologies Corp. has built 
2 fully automated and commercialized 
sensitivity-analysis tool, Pisces 1 .5 ,  
and applied it to systems as large as 
100,000 source lines of code. The  tool 
can operate on larger systems, but to 
our knowledge has not. 

Sensitivity analysis 

+ Random testing treats the pro- 
gram as a single, monolithic black-box. 
Sensitivity analysis examines the source 
code location by location. 

+ Random testing requires an ora- 
cle to  determine correctness. 
Sensitivity analysis requires no oracle 
because it does not judge Correctness. 

4 Random testing involves analyz- 
ing the possibility that there are no 
faults. Sensitivity analysis assumes that 

Although a program’s 
one fault exists. 

true probibility- of Tailwe, 
SENSITIVITY conditioned on an input 

ing you need to gain a ANALYSIS DOES distribution, is a single fixed 
value, the  exact value is I NOT REQUIRE unknown. For that reason, 

lets you determine how 
much system-level test- 

certain level of confi- 
dence that faults are not 

in our approach to combine 
the two techniques, we treat 
the probability of failure as extremelv low testabili- 

hiding. It helps identify 
regions of code with 

T, which require addi- AUTOMATED a random variable 0 and 
tional uni t  tes t ing o r  estimate a Drobability density 
other  ver i f icat ionand 
validation resources. Additional bene- 
fits are possible with slight modifica- 
tions to the sensitivity-analysis algo- 
rithms, which we describe in detail 
elsewhere.6 Such benefits include 
increased fault tolerance and 
improved safety assessment. 

We believe the results of our exper- 
iments’,’ are sufficient to motivate 
additional research and use with this 
technique. Although we cannot guar- 
antee that you can use it to assess relia- 
bility with the precision required for 
safety-critical software, we believe it is 
premature to dismiss this possibility. 

COMBINING TECHNMUES 

If software testability produces 
accurate predictions, then you should 
be able to combine random black-box 
testing with sensitivity analysis to 
assess reliability more precisely than is 
possible with black-box testing alone. 
Both random black-box testing and 
sensitivity analysis gather information 
about an estimated probability of fail- 
ure. However, the two techniques gen- 
erate information in distinct ways: 

1 
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finction for 0, conditioned 
3n an input distribution. A pdf for 
lome domain defines the likelihood 
that any element in the domain is cho- 
sen. Here we are concerned with pre- 
dicting a pdf for 0 using both black- 
box testing and sensitivity analysis. 
The pdf in Figure Za, pdf,, transforms 
the number of random tests executed 
without discovering a failure into 
information about the likely reliability 
of the software. The pdf in Figure Zb, 
pdfs, transforms the sensitivity analysis 
a t  each program location into informa- 
tion about the possible size of a single 
fault somewhere in the program. The 
prediction of pdfs is conditioned on the 
same input distribution as pdf, but pdfs 
is also conditioned on the assumption 
that the program contains exactly one 
fault, and that this fault is equally likely 
to be at any location in the program. 

In Figures Za and Zb, for each hori- 
zontal location 8, the height of the 
curve indicates the estimated probabil- 
ity that the program’s true probability 
of failure is less than 8. In Figure Za, 
we assume that the testing has uncov- 
ered no failures. As the number of tests 
increases, we expect probabilities of 
failure near 0.0 to be more likely and 
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those closer to 1.0 to be less likely. Of 
course after only one test that produces 
the correct output, Pr 8 = 1.0 = 0.0. 
Details about deriving an estimated pdf 
for 0, given many random tests, are 
provided elsewhere.8 

As Figure 2a shows, we mark inter- 
val estimates for each estimayd pdf. If 
the interval between 0.0 and 8 includes 
90 percent of the area under the esti- 
mated pdf, then according to random 
testing the aEtual probability of failure 
is less than 8 with a confidence of 90 

reliability (or correctness). Figure 2a 
suggests that if there is a fault, it is 
likely to induce a small probability of 
failure; Figure 2b suggests that tiny 
impact faults (those that cause the pro- 
gram to fail with probabilities less than 
$) are unlikely. 

W e  now attempt to quantify the 
meaning of the two estimated pdfs 
taken together. Hamlet has derived an 
equation to determine what he calls 
probable correcme~s.~ When T tests have 
been executed and no  failures have 

percent. Similarly, if the interval in 
Fimre 2b includes 10 Dercent of the = pr(B <_ 6) I - - & 

occurred, then 

(1) ” 
area under the estimated pdf, then 
according to sensitivity analysis, if a 
fault exists, there is a 90 percent confi- 
dence that the probability of failure is 
greater than 9. 

Testing is unlikely to find a fault 
that induces a near-zero probability of 
failure. Locations that have sensitivity 
estimates very close to zero are trou- 
bling in an application that demands 
extreme reliability. However, a fault 
that induces a probability of failure of 
exactly 0 is technically not a fault a t  all 
- no failures will be observed with 
such a fault. 

If there are no faults in a program, 
then the true probability of failure is 0 
(8 = 0.0), and we have achieved ultra- 

where C is probable correctness, 8 is 
the true probability of failure, 6 issome 
approximation of 8, and 0 < 8 5 1. 
(Hamlet calls C a measure of probable 
correctness, but it would be called a 
Confidence in correctness if the equations 
were cast in a traditional hypothesk 
test.) 1 - C is the likelihood that 8 > 8, 
meaning that we l p v e  been fooled i p o  
thinking that 8 5 8, when really 8 > 8. 

Let y represent the impact caused to 
the true probability of failure by the 
smallest fault in the program; then y is 
the smallest possible nonzero probabil- 
ity of failure for the program if we 
removed all other independent faults. 
If there are other faults, y < 8. y is 

assumed to be unknown. Let repre- 
sent the prediction of y from sensitivity 
analysis according to our code; the 
testing distribution, D; and the fault 
classes that sensitivity analysis simulat- 
ed. Note that one of the following situ- 
ations is true, but we cannot know 
which it is: $ > yor yr 9. 

After testing T times and finding no 
failures, for any p, we have confidence 
C ’: 

C ’ = P r ( 0 < $ 4 2  l - ( l - $ ) T  (2) 

Given that actual failure probabili- 
ties in the interval (0, 9) are unlikely, 
our confidence that 8 = 0.0 is just 

p7ie = 0.0) 2 1 - [ P ~ ( B  2 9) + 
Prir < $11 (3) 

where P r ( y <  9) is the probability that 
we failed to correctly assess the mini- 
mum probability of failure induced by 
any fault in our program from the fault 
classes that we simulated. (Assessing 
P?(y < $), which is outside the scope of 
this article, requires two additional 
probabilities: the probability of an 
actual fault causing a lower impact to 
the actual failure probability than ;, 
and the probability that the order of 
magnitude of 9 is too precise for the 
number of input values used in deter- 
mining it, which is a statistical approxi- 

Figure 2. (A) The mean o f  the estimated p d h  curve, 8, is an estimate of the probability o f  failure. (B) 
the minimum probability of failure using sensitivity analysis. 

is a prediction of 
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mation error. This problem is partially 
formalized elsewhere.") Pr(y < $) is a 
function of the fault classes that were 
simulated and the sample size of test 
cases from D that were used during 
sensitivity analysis. There could be a 
fault in our program from a fault class 
not simulated that has a smaller impact 
on y than the fault classes we did con- 
sider. 

T o  better understand equation 3, 
assume that we have tested T times and 
found no errors. Assume further that 
sensitivity analysis has selected $ as the 
smallest probability of failure induced 
by any of the faults it simulated. W e  
use $ as a reference point for establish- 
ing a confidence in this software. 
Trivially, 

1 = p r ( e = o ) + p r ( o < e < + ) +  
p(e 2 +) --f pr(e = 0) 

p(e 2 +) 
= i - ~ r ( o < e < + ) -  

Thus we can estimate the probabili- 
ty that the program is correct by esti- 
mating Pr(0 < 8 < $) by sensitivity 
analysis and by estimating Pr(8 2 9)  
using Hamlet's probable correctness 
equation and T. 

Th,e goal of this squeeze play is to 
push 8 toward $ in Figure 2 when Ti; 
fixed and confidence is high." As e 
approaches or exceeds $, we can be 
increasingly confident that the soft- 
ware is correct.  As an example of 
equation 3, suppose we have a pro- 
gram with three independent faults, 
with impacts to 8 of 0.0001, 0.00001, 
and 0.000001. In this situation, 8 = 
0.000111, and y =  0.000001. Suppose $ 
= 0.000015. In this situation, 9 > but 
6 > 9. If C' is fixed close to 1.0 (mean- 
ing that the T we will try is large 
enough with respect to $), the likeli- 
hood that the program will fail at least 
once in T tests is also close to 1.0; 
hence, we are unlikely to be able to 
apply equation 3 because a failure 
should occur. 

Now suppose that we remove the 
faults with failure probabilities of 
0.0001 and 0.00001 after observing 
one or  more failures, and when we 

)erform sensitivity analysis again on 
he modified program, 8 is still 
).000015. (In this program, we now 
lave a single fault, so y = 8 = 
).000001.) Again we will test this code 
Ttimes to fix C'close to 1.0. Because 8 
: $, Pr(y < $) = 1.0 and Pr(8 = 0.0) = 
1.0. Given that we cannot know the 
,robability of a true fault causing a 
ower impact to the actual failure prob- 
ibility than $ (without knowing where 
ill the faults are), the best that we can 
;ay about a confidence in absolute cor- 
-ectness (based on T successful tests 
ind $) is that we have confidence C" 
:hat the true probability of failure is 
cero: 

r2 1 - ~ r ( o < e s + ) - p r ( 0 > + )  
+ (1 - 9,7 = 1 - [2+"E:  

where T' is the number of test cases 
used during sensitivity analysis and E is 
I small fudge factor subtracted from $ 
to allow for imprecision during sensi- 
tivity analysis. 

This is one method for combining 
testability analysis with testing results 
to sharpen an estimate of the true 
probability of failure. This use of testa- 
bility measurement is essentially a 
cleanup operation - a method to  
assess if software has achieved a desired 
level of reliability. W e  believe that 
testability assessment is more useful 
earlier in the development of software. 
This idea is dramatized in Table 2, 
which gives you a feeling for the cost of 
testing to different levels of confidence, 
given different degrees of testability. 

ur research suggests that software 0 testability clarifies a characteristic 
of programs that has largely been 
ignored. W e  think that testability 
offers significant insights that are use- 
ful during design, testing, and reliabil- 
ity assessment. In  conjunction with 
existing testing and formal verification 
methods, testability holds promise for 
quantitative improvement in statisti- 
cally verified software quality. 

W e  are particularly interested in 
designing software to increase its testa- 

..- 

7 
44 

458 
298 

460,514 
46,05 1,699 

693,147,18 1 
2,302,585,093 
2,995,732,273 

0.10 
0.10 
0.01 
0.01 
1 0-5 
10-7 
10-9 

10-9 
10-9 

C'  
0.50 
0.99 
0.00 
0.95 
0.99 
0.99 
0.50 
0.90 
0.95 

ility. Although the existence of ax 
,per bound on testability is solely ou! 
mjecture, our research using sensitiv. 
y analysis and studying software'! 
:ndency to not reveal faults durinl 
:sting suggests that such a bounc 
usts. W e  challenge software testinl 
searchers to consider this. 

A given piece of software will o 
ill not hide a given fault from test 
tg. We have found tha t  it is possibli 
) examine this code characteristic - 
lftware testability - without know 
ig if a particular fault exists in tha 
iftware, and without reference tc 
xrectness. Because it does not rel: 
n correctness, software testabilir 
ives a new perspective on code devel 
pment. 

W e  have briefly described on '  
ynamic technique, software sensitivir 
nalysis, for predicting software testa 
ility. Sensitivity analysis has yieldel 
romising results in several experi 
ients;' research and practical applica 
ion of this technique continue 
'erhaps other more effective or mor 
ffkient testability measurement tech 
iques will be discovered, but whateve 
xhniques are employed to measur 
stability, we are convinced that thi 
iherent software characteristic wil 
ecome an important factor to consid 
r during software development an 
ssessment. I 
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