
System Level Combinatorial Testing in Practice –
The Concurrent Maintenance Case Study

Paul Wojciak
IBM Systems & Technology Group

2455 South Road

Poughkeepsie, NY 12601, USA

wojciak@us.ibm.com

Rachel Tzoref-Brill
IBM, Haifa Research Lab

Haifa University Campus

Haifa, 31905, Israel

rachelt@il.ibm.com

Abstract—Combinatorial test design (CTD) is an effective test
design technique that reveals faults resulting from parameter
interactions in a system. CTD requires a test space definition
in the form of a set of parameters, their respective values, and
restrictions on the value combinations. Though CTD is considered
an industry best practice, there is only a small body of work
on the practical application of CTD to industrial systems, and
some key elements of the CTD application process are under-
explored. Specifically, little consideration has been given to the
process for identifying the parameters of the test space and their
interrelations, how to validate the test space definition remains
an open question, the application of CTD in reported work
concentrates mostly on function or interface level testing and
is hardly expanded to other levels of testing, and there is a
significant lack of evaluation of the degree to which CTD helped
improve the quality of the system under test.

In this work, we analyze the continuous application of CTD
in system test of two large industrial systems: IBM® POWER7®
and IBM® System z®. For POWER7, CTD was used to design
test cases for server concurrent maintenance. The application
of CTD was in direct response to inconsistent reliability of
those features on the prior POWER6® servers, and resulted
in noteworthy quality improvements on POWER7. Success with
POWER7 led to application of the methods to System z Enhanced
Driver Maintenance testing, also featured in this work. To the
best of our knowledge, this is the first comprehensive analysis
of CTD usage in system test of industrial products, and the first
analysis of long term use of CTD.

We describe the methodology that we followed to define the
combinatorial test space, while answering some unique challenges
rising from the use of CTD to design functional test cases at
system level rather than at interface or function level. We also
describe our methodology for evaluating the test space definition
and continuously improving it over time. In addition, we describe
advanced CTD features that we found helpful for achieving an
effective yet affordable test plan. Finally, we quantitatively and
qualitatively evaluate the overall effectiveness of CTD usage, and
show that it resulted in significantly improved server concurrent
maintenance features.

I. INTRODUCTION

Combinatorial test design (CTD), a.k.a. combinatorial test-

ing, is an effective test design technique for coping with the

verification challenge of increasingly complex software sys-

tems. As the size of test spaces continuously grows, exhaustive

verification methods become impractical. Functional testing,

on the other hand, is prone to omissions, as it always involves

a selection of what to test from a possibly enormous test space.

CTD addresses this challenge by a systematic selection of

tests, which is based on the observation that in most cases,

the appearance of a bug depends on the interaction between a

small number of features, or parameters, of the system under

test (SUT). Experiments show that a test set that covers all

possible pairs of parameter values can typically detect 50% to

75% of the bugs in a program [7], [22]. Other experimental

work has shown that typically 100% of bugs can be revealed

by covering the interaction of between 4 to 6 parameters [15].

Hence, in CTD, the test space is manually modeled by a set

of parameters, their respective values, and restrictions on the

value combinations, termed a combinatorial model. A valid

test in the test space is defined by an assignment of one value

to each parameter without violating the restrictions. A subset

of the space is automatically constructed so that it covers

all valid value combinations (a.k.a interactions) of every t
parameters, where t is usually a user input. The most common
application of CTD is known as pairwise testing, in which the

interaction of every pair of parameters must be covered, but,

in general, one can require different levels of interaction for

different subsets of parameters. Each test in the result of CTD

represents a high level test, or a test scenario, that needs to be

translated to a concrete executable test.

Existing studies and reports [3], [24], [9], [5], [7] indicate

that CTD is very effective for a variety of system types and

testing domains, and is considered best practice when the

tested functionality depends on multiple factors such as inputs,

configuration elements and data items. However, there is only

a small body of work on the practical application of CTD to

industrial systems. A recent survey [17] by Nie et al. reveals

that only around 5% of the publications on CTD explore

the process for identifying the parameters of the test space

and their interrelations, which is a crucial process since it

determines to a large extent the effectiveness and efficiency of

the resulting test plan. Nie et al. indicate that how to effectively

and efficiently model the test space for CTD, as well as how

to validate the model, remain open questions in this field. Nie

et al. also indicate that there is a lack of empirical results in

CTD, and there is a need to conduct more studies and collect

more evidence to fully understand the limitations and strengths

of CTD. Another observation is that in the vast majority of the

publications on the practical application of CTD, the test space

2014 IEEE International Conference on Software Testing, Verification, and Validation

978-0-7695-5185-2/14 $31.00 © 2014 IEEE

DOI 10.1109/ICST.2014.23

103

parameters represent either input parameters at the interface or

function level or configuration variables, whereas using CTD

to design functional test cases at the system level is hardly

explored. Nie et al. call for the expansion of CTD to other

levels of testing beyond function test.

In this work, we describe the long term use of CTD to

design test cases at system level for features of two large

industrial systems: IBM® POWER7® concurrent maintenance

features (CHARM), and System z® Enhanced Driver Main-

tenance (EDM). These features, collectively referred to as

concurrent maintenance features, perform changes, additions,

and repair of the system hardware and code while the system

is running live business applications. Performing live mainte-

nance rather than scheduling an outage for maintenance is

extremely important because it helps preserve the constant

availability of the server. However, it also constitutes a very

complex technical challenge, both design-wise and test-wise.

It is important to note that while these features manipulate

hardware systems, they are in fact implemented in code, thus

the functionality under test is software (firmware) based. Pre-

vious experience with the concurrent maintenance features on

POWER6® revealed some significant deficiencies in system

test, and therefore CTD was used to design the system level

test cases for POWER7 during the past three years. Following

the success of CTD on CHARM and the observation that some

quality concerns of EDM had a direct connection to parameter

interactions, CTD was also applied to system test of EDM, and

we report on this effort as well. To the best of our knowledge,

this is the first comprehensive analysis of CTD usage in system

test of industrial products, and the first analysis of long term

use of CTD.

Identifying the test space parameters and values at the

system level is much more challenging than in the traditional

CTD application at the function level or for optimization of

configurations, since in the latter, the input parameters and

configuration variables can be used as a starting point for

the test space definition, whereas in the former, one needs to

identify the test space from scratch. We suggest a methodology

for identifying parameters and values at system level and

describe its application to our case studies.

We also suggest a methodology for validating the resulting

test space definition. It is based on the analysis of test results

from CTD in each test cycle as well as analysis of field results,

in order to evaluate the test space definition and improve it for

the next test cycle. We used this methodology to continuously

evaluate and improve the CHARM models during the past

three years.

Another contribution of this work is a quantitative and

qualitative evaluation of the effectiveness of CTD usage on

CHARM, that shows that the use of CTD resulted in markedly

improved concurrent maintenance features – field results show

a dramatic increase in the success rate of the concurrent

maintenance operations, and an elimination of the crashes for

all but a handful of cases. Furthermore, most of the remaining

failures are due to factors on which testing has no impact.

According to [17], the evaluation of the quality of the SUT

following the application of CTD is yet another area which

is considerably under-reported in published studies on CTD –

there was only one such study out of 93 surveyed papers.

In addition, we describe various advanced CTD features that

we used and found beneficial. These features are provided

by our CTD tool, IBM Functional Coverage Unified Solution

(IBM FOCUS) [12], and helped us through the test space

modeling and test plan refinement to reach an effective yet

affordable test plan.

To summarize, the contribution of this work is as follows:

we report and analyze two large industrial case studies for the

long term application of CTD. We describe a non-traditional

application of CTD at system level, and suggest methodologies

for defining a test space and for validating it. We demonstrate

the use of advanced CTD features to improve the resulting test

plan. Finally, we provide an evaluation of the effectiveness of

CTD and the degree to which it helped improve the quality of

the features under test.

In the following we describe in Section II the concurrent

maintenance features, as well as the previous system test ap-

proach that was in use and its deficiencies. Section III presents

the methodology we followed in applying CTD, including

the process for defining the test space and for validating it,

and the refinement of the resulting combinatorial test plan.

In Section IV we provide an evaluation of the effectiveness

of CTD, that shows how CTD significantly improved the

quality of the concurrent maintenance features, followed by

a discussion in Section V of the lessons learned from our

experience. Section VI explores related work on the practical

application of CTD. Finally, Section VII summaries our work

and provides future work directions.

II. THE SYSTEMS UNDER TEST

In this section we describe the concurrent maintenance

features under test, as well as the previous test approach taken

and its deficiencies. We start with some background that puts

these features in context and highlights their importance to

customers.

A. CHARM: IBM® Power® Server Concurrent Maintenance

Enterprise computing environments require constant avail-

ability. Time lost to unavailable server resources can cost

financial institutions millions of dollars [1]. Lost time can

come from scheduled and unscheduled outages. Unscheduled

outages can originate from events outside the server, from

failing hardware components within the server, or software

problems associated with the server. Scheduled outages repre-

sent the largest contributor to enterprise system unavailability

and lost time [23]. Routine maintenance for system hardware

upgrades, code updates, or repairs are the biggest contributor

to scheduled outages. Given that enterprise servers rarely expe-

rience significant lulls in their utilization, adding more capacity

to those systems while they are running is very valuable to the

customer. However, adding more physical processor, memory

or Input/Output (I/O) hardware while the server is running is a

technically complex undertaking akin to adding more cylinders

104

to your car while driving on the highway. Scheduled outages

of enterprise servers for the purpose of upgrading or repairing

hardware can nearly be eliminated by concurrent maintenance

features. IBM’s Power enterprise class servers address this

with Central Electronic Complex (CEC) Hot Add Repair and

Maintenance (CHARM) [4].

CHARM firmware enables Power systems to avoid sched-

uled outages for capacity and maintenance operations. Built

from interconnected compute nodes, high end Power servers

support adding, changing, and repairing processor, memory

and I/O capacity. These actions are performed while the server

may be hosting over a thousand virtual server instances each

running business of scientific applications.

POWER6 CHARM test design employed a combination of

functional and structural test cases [13]. Functional test cases

were derived from the design specification. Structural tests

were based on similar functions on the IBM system z class of

enterprise servers. A system test in CHARM, a.k.a a trial,
is concerned with performing the maintenance operations

end to end including the full sequence of steps, i.e., several

firmware components being tested together and in sequence.

With this design approach, the POWER6 test was thought to

be a success. However, field results were not as anticipated.

Field concerns had several causes. Limited servicer training

and failing hardware components were out of test’s scope.

However, firmware problems and some design concerns had

escaped test. Root cause analysis showed attributes influencing

failures had not been part of the test plan. Secondary errors

during concurrent maintenance plagued the field but played

little role in the test plan. Server configurations at the customer

often differed considerably from those of the system test

machines. Firmware state dependence also intersected with

failing cases. As it turned out, there was much omitted from

the test plan.

The detailed evaluation of the POWER6 concurrent mainte-

nance experience led to a number of test changes for POWER7

server concurrent maintenance testing, the most significant of

which was test planning using the IBM FOCUS tool [12] that

implements combinatorial test design. In Section III we go

into detail on how this technology was used to improve the

quality of POWER7 CHARM system test.

B. EDM: System z Enhanced Driver Maintenance

Enterprise customers demand and expect 24×7 availability
from System z servers. Meeting that demand requires con-

currency of maintenance including software, firmware and

hardware. A major part of that equation is concurrent update

of firmware fixes and delivery of new functions.

Comprising well over 10 million lines of code across 70+

major subsystems, System z firmware is the fundamental

underpinning of the mainframe platform after the hardware

itself. Firmware manages all aspects of the System z platform

from day to day operations of the virtualized compute environ-

ment to recovery of errors occurring throughout the system.

Firmware assures system availability demands are met for the

mainframe customer. Maintenance and updates to System z

firmware are concurrent including updating the entire firmware

stack to a new version.

Known as Enhanced Driver Maintenance (EDM), this Sys-

tem z firmware capability describes concurrently updating the

firmware stack, called the driver, from one version to another.

Thousands of different mainframe operating system instances

are permitted to be running customer production business

applications and workloads during such an EDM update of

the firmware driver. EDM must complete with no visible

disruption to the running operating system environments. The

vast majority of System z customers rely upon EDM when

they upgrade to a new driver.

Test design for EDM had been based on functional tests

against the design specification and structural tests based on

the firmware implementation for over a decade. Verification

of EDM on System z is the responsibility of the system test

team. A single system test trial for EDM can take well over

eight hours when setup, execution, and post update verification

actions are considered. The trials themselves are very complex

with many sub steps, each with definite sequences necessary

to test the z firmware. As a result, getting the most return from

every test trial is essential. Note that the system trials for both

CHARM and EDM are performed by a human and contain

almost no automation.

The resulting customer experience with EDM met expecta-

tions for multiple generations of mainframe. However, for the

zEnterprise® z196 server family, customer experience with

EDM fell short of expectations. While a very high success

rate of over 97% was experienced in the field, the expectations

were to have zero impacts. A thorough review of field results

and factors contributing to EDM issues was conducted. Key

findings were:

• Interaction of EDM firmware with non-EDM system

functions and features correlated with issues

• Sequence of non-EDM system operations occurring be-

fore and after EDM correlated with issues

• A definite list of system functions interacting with EDM
began to appear

• New functions in the updated firmware level merited

particular attention (issues using a new function only

when that function was concurrently activated)

Knowing that combinatorial test design (CTD) serves well

for test designs sensitive to interactions, sequences, and differ-

ent inputs, suggested a possible application for the next major

system test of EDM on System z. Section III details this effort.

III. THE CTD APPLICATION PROCESS

As mentioned in Section II, the most significant change

in the system test approach for POWER7 was in the test

case design phase. Simply running more tests was not the

answer. The tests needed to consider the configuration aspects

contributing to failures, the secondary failure modes, and

also the new features being added to POWER7 that might

interact with concurrent maintenance. The number of test cases

required to meet these needs appeared to be unaffordable con-

sidering the available time and manpower. The IBM FOCUS

105

tool [12] that implements CTD was applied to the challenge

of creating a high quality yet affordable set of tests. The

CTD models for CHARM cover configurations, secondary

errors, and new features across all the POWER7 concurrent

maintenance functions. Separate models were created for high

end (IBM Power 795) 8 node machines and for mid-range

(IBM Power 770 and 780) 4 node machines. In addition, the

models evolved throughout three years and several different

releases. Overall there were 12 different model versions in

use. The final model for mid-range machines contained 10

parameters and 20 restrictions, and defined a test space of

109,776 valid trials. The final model for high end machines

contained 9 parameters and 18 restrictions, and defined a test

space of 13,944 valid trials.

EDM also experienced some quality concerns. As described

in Section II, the concurrent upgrade failures were in combi-

nation with a previous or a following customer operations,

indicating that interactions were important for triggering the

failures. In system tests, however, there was no coordination

between EDM and the operations happening before and after

EDM. This observation together with the success of CTD on

CHARM led to the application of CTD for system test of EDM

on IBM zEnterprise EC12 [8]. Model parameters for EDM

reflect the three major sequence steps in the firmware process:

Pre-EDM, During-EDM, and Post-EDM. The parameter val-

ues are designed to introduce pairwise interactions amongst

major System z firmware functions and EDM. The final

version of the CTD model for EDM contained 10 parameters

and 20 restrictions, and defined a test space of 2.25E+8 valid

system trials.

Note that the models for CHARM and EDM contain a

relatively small number of parameters. The challenge is to

maintain a small and comprehensive model at a reasonable

abstraction level for such complex systems, rather than letting

the number of parameters and values explode by defining

a too granular test space. In the following we describe the

methodology we used for creating the above CTD models

while coping with this challenge, as well as our methodology

for validating the test space definition and improving it. In

addition, we describe how we refined the resulting test plans

using advanced CTD features, available in IBM FOCUS.

A. Defining the test space

The main step in the application of CTD is the definition

of the test space in the form of parameters, their respective

values, and restrictions on value combinations (a.k.a the com-

binatorial model). This crucial step provides the foundation

for the following steps, and largely determines the quality

of the resulting test plan. Any important points of variation

overlooked by the model result in coverage omissions and

reduced effectiveness of the test plan, and any redundant

parameters or values in the model result in redundancy and

reduced efficiency of the test plan.

1) Identifying the parameters: The first task in defining
the combinatorial model is identifying the parameters of the

model. Understanding the differences between function level

software testing and system level software testing is important

for grasping how the modeling parameters used also will need

to differ. Function level testing is generally concerned with

inputs and outputs of individual product features or software

components. Such testing is concerned with verifying coverage

of each input and output of the function, and variations are

typically derived from the input and output value differences.

The sequences and interactions of these input and output

values are formally considered and the combinatorial modeling

serves very well for this purpose.
System level software testing is most notable for the concen-

tration on the overall stress to the system under test. Multiple

applications operate simultaneously exercising a number of

different functions at the same time. Where the function

test would concentrate on each function or feature somewhat

in isolation, the system test is concerned with interactions

amongst different functions and features when they are all

running together. As a result, the system test model would

select parameters to represent the different functions and

features to be exercised in concert.
System test often refers to different combinations of com-

pute applications as a workload. For example, an on-line

trading workload could consist of the web serving front end,

an application serving middle tier, and a database back end.

The model for system-testing such a system could choose

parameter values to represent workload intensity (through-

put, utilization), workload ramp time (increase throughput

or utilization from low to high and back to low), workload

composition (trade size, company or commodity, and market)

and workload constraints and error conditions. A functional

test model in this example would be more likely to validate

each of the three tiers and their characteristics independently.

At most, the functional test would model specific transaction

flow from end to end.
In the case of CHARM, system test is concerned with

performing the maintenance operations end to end including

the full sequence of steps. The interactions modeled are

between the firmware supporting CHARM and other software

components executing on the system while maintenance is per-

formed. As a further example, EDM system testing represents

three distinct phases of operation with a set of preconditions

occurring before the upgrade, a set of during conditions that

happen while the firmware is managing the update, and a set

of post conditions being done after the upgrade. The system

test model treats the various functions, features, system stress,

system states and errors that can occur as part of those three

distinct EDM phases.
From our experience, to cope with the higher abstraction

level that modeling at the system level requires, answering a

series of questions often helps:

1) Does the system test have a flow with distinct steps?

This characteristic helps the person doing the model

derive parameters that reflect steps in the flow. CHARM

has distinct operations with a set flow, and errors are

introduced and detected at specific points in that flow.

EDM has a notion of pre-cdu, during-cdu, and

106

post-cdu parameters. In both models, the parameters
expose these flow steps to advantage.

2) Are there system states, usage patterns or user stories?

can they be represented as categories of system states or

use cases? This is beneficial in limiting parameter value

explosion. For example, in CHARM, the Workload
parameter represents a usage pattern. In EDM, the

inclusion of various system operational stress levels was

captured by the During_Workload parameter.
3) Does bad path need explicit testing? For example, we

had bad path related parameters in the CHARM model

called Error_during_CHARM, and State. In CTD,
bad path requires special consideration. We further elab-

orate on modeling of bad path in Section III-A3.

4) What configuration characteristics are meaningful? This

tends to be the traditional use of CTD for function

test and it applies to system test as well. For example,

node and failing_FRU reflect configuration aspects
for CHARM. The sensitivity of EDM success to the

starting firmware version was included through the

From_Level parameter, which depicts allowed com-
binations of code from over 70 firmware components.

5) Are there orthogonal system operations or applications

whose intersection with the primary function to be tested

must be considered? For example, the EnergyScale
parameter in CHARM models covers firmware functions

that interact meaningfully with CHARM code.

6) Is there any field experience or other external sources

from which important factors can be derived? For ex-

ample, in the CTD model for EDM, error cases derived

from field experience and RAS statistical models were

included as parameters. Associations between Pre and

Post conditions were also created in the model, as cor-

relation was suggested by field experience. In addition,

some functions and features were included in the model

based on either their interaction with EDM as seen

through field results or their being historically complex.

7) Are there any new additions to the system that need to be

considered? For example, some functions and features

were included in the model for EDM since they were

new or recent additions to System z.

2) Assigning values to the parameters: For each parameter,
one needs to decide what level of granularity of its values is

needed. For example, in system test, the modeler can be less

granular regarding the workload parameter, and consider its

values in terms of bandwidth, throughput or capacity as subset

or percentage of the maximum.

Usually in CTD, the granularity of each parameter is

determined separately when it is defined and added to the

model. However, we noticed that it is valuable to also consider

the general granularity of the model. As parameters are added

to the model, one should be able to verify that they all have

similar levels of granularity. When a certain parameter has de-

cidedly more granularity than all other parameters, one would

see in the proposed tests that there is not much difference

between many of them. The more granular parameter would

force additional tests that are not meaningful. Some general

well-known testing techniques such as equivalence partitioning

and boundary value analysis [16] can be applied to help

determine the granularity level of the parameter values [21].

In addition, when defining parameter values, considerations

similar to the ones mentioned for parameter identification, such

as field experience, complexity and novelty, can be applied.

3) Modeling bad path: Similarly to function test models,
the system level test needs to be concerned with error handling

by the software. Function test models might have granular

error conditions aligned with each input to be modeled. The

system test model would be more likely to include categories

of errors from a number of functions and features perhaps

basing them on the expected system response for each cat-

egory. As can be seen, choosing modeling parameters for a

system test requires a higher level of abstraction. CHARM

models include the parameters Error_during_CHARM and
State that represent the secondary error that may occur

during CHARM and its associated firmware state, to achieve

sufficient coverage and validate error handling related inter-

actions. EDM models include Pre_Op_RAS, During_RAS,
and Post_Op_RAS to address the need for error handling
firmware coverage.

For CTD in general, it is especially important to specify

the values and value combinations that represent bad path.

Since each test in the CTD result may cover many unique

combinations, if any of them represents bad path, the tests they

appear in will exit prematurely or at least not execute the main

path, and will not exercise the unique good path interactions

they are supposed to cover. Avoiding such false coverage of

required interactions is achieved by tool support for indicating

what are the error conditions in the model [12], [6]. When bad

path values are specified, each bad path test contains a single

error condition, and the bad path tests aims only at covering

interactions between bad path values and good path values.

It is common that the logic of the error conditions does not

depend on interactions, and so requiring level 1 interaction

coverage for bad path is sufficient. However, in CHARM,

the same error would often be handled differently depending

on the firmware in control for the failing CHARM step or

depending on the configuration of the system. As a result,

covering interactions between bad path values and good path

values was required. Since a lot of attention was given to bad

path testing in CHARM where full recovery in the presence

of errors was expected, the CTD test plan contained a ratio of

up to 2:1 bad path versus good path tests.

4) Defining restrictions on value combinations: For both
EDM and CHARM, restrictions were defined within the IBM

FOCUS tool to eliminate invalid combinations of certain error

conditions, configurations, and features. Restrictions can be

easily specified within IBM FOCUS by viewing different

projections of the test space on subsets of parameters, and ex-

cluding value combinations directly from the projection [20].

5) Determining the interaction coverage requirements:
Different pairwise and t-wise model requirements were eval-

107

uated for our industrial applications. A pairwise requirements

test approach was chosen after study of the 3-wise trial list

and concluding the parameter interactions proposed seemed

more than necessary. In addition, refinement of the pairwise

requirements was done to remove insignificant interactions, as

described in Section III-B.

B. Refining the CTD test plan

Once the test space is defined and a combinatorial test plan

is generated, if the recommended list of tests is affordable,

one can proceed with implementation of the tests. However,

commonly it does not fit within the given testing resources,

and there is a need to winnow the list of tests. One way to

achieve reduction in the number of tests is by removing certain

parameter combinations from the coverage requirements when

they have no significant interaction. This should be done with

care as not to lose important interactions, and requires tool

support for mixed-strength test generation [20], [6].

Another way to achieve reduction is by handpicking an ex-

clusion list from the resulting test plan. Careful consideration

needs to be made on what to exclude from the test plan, since

each test in the result of CTD may cover many unique com-

binations. The interactive refinement feature [19] in the IBM

FOCUS tool was designed to support such cases. It allows ed-

ucated decisions on what to exclude or modify in the test plan

that results from CTD by displaying the coverage gaps that

are introduced for each manual modification step. In addition

to controlled reduction in the size of the test plan, this feature

can be used to steer the test plan to focus more on higher

importance areas, due to complexity or other considerations.

This is achieved by requesting higher interaction coverage

for certain value combinations of higher importance. We used

the interactive refinement feature to reduce the appearance of

lower importance values, while making sure that no coverage

gaps are introduced in the process. For example, certain values

of the Error_during_CHARM parameter of the CHARM
models were handled this way since they represented lower

importance failure types.

We also biased parameter value appearance in the recom-

mended tests by assigning weights to parameter values [20],

[6] as part of the input to the CTD algorithm. Weights are re-

quested proportions of values in the test plan that results from

CTD. Assigning a good set of weights often takes a subject

matter expert with customer experience and field experience

from prior products. Note that weights are considered as soft

constraints by CTD tools, hence the resulting test plan might

not fully satisfy the requested distribution.

C. Evaluating the combinatorial model

We evaluated the CHARM combinatorial models by analyz-

ing the test results. We took advantage of the fact that system

test was done in waves that each focused on specific concurrent

maintenance tests. Wave objectives were comprised of new

content and regression testing of existing content. Between

the test waves, fixes were accumulated and delivered before

starting the next system test wave. To evaluate the quality of

the combinatorial model and refine it, we typically waited until

the end of a test wave and reviewed the results from all the

test trials. We then used the evaluation to guide the next test

wave. The review considered the following questions:

• How was the overall defect discovery quality and rate?
• Did all parameters seem to matter?
• Can some parameters be eliminated?
• Are new parameters necessary?
We looked back on the experience where defects were

found, the root cause of those defects, whether the root cause

correlated in some observable way to the trial parameter

values, and parameters where defects were not found. We

tended to interpret the absence of any defect correlation

with a parameter’s entire set of values as an indication that

parameter does not matter. However, we did not just take

that parameter out of the combinatorial model yet. We waited

until we had some amount of customer experience with the

product and whether that evidence also indicated the parameter

was irrelevant. For instance, the ECO mode parameter was
in the models throughout all of POWER7 CHARM testing

but no correlation with defects was found. Before eventually

removing the parameter, its pairwise requirement was dropped.

By removing the pairwise requirement, and by using weights,

some coverage of ECO mode was retained. Another parameter

from the POWER7 CHARM models, EnergyScale, did not
correlate with any defects for the first two test waves. In the

third test wave, a very significant defect discovery related

directly to the EnergyScale parameter. As a result, the

parameter was retained even though EnergyScale complicated

test set up. Root cause of the EnergyScale issue indicated a

missing system parameter, namely the workload or operational

system stress during the test. This led to the introduction of

the Workload parameter to new CHARM models.

Correlation of defect discovery to model parameters was

employed to control the wave content and order of execution

within a wave. Each test wave would try to diversify tests

executed intending to expose certain interactions, by delaying

tests that contained parameter values already correlated with

an open defect in the current wave. For the regression part of

the next wave, trials with parameter values previously finding

defects were included, along with the new trials that were

recommended by the IBM FOCUS tool.

IV. EVALUATION

We present results from applying CTD to CHARM and

EDM in two dimensions: improvement in test quality, based

on analysis of system test results, and improvement in the

quality of the server concurrent maintenance features, based

on analysis of field results. We analyze field results for

CHARM only. While we do not have field results yet for

EDM, its preliminary evaluation on EC12 customer production

machines has the best results ever seen for EDM to date.

A. Improvement in Test Quality

To evaluate test results, we use the well known test case

effectiveness metric, which we refer to as the defects per trial

108

Fig. 1. POWER6 Test Outcomes Per Release

Fig. 2. POWER7 Test Outcomes Per Release

ratio. An important dimension to consider is how this ratio

changes in the course of time, and whether any indications

on product stability can be drawn from the nature of change

along time. In addition, we qualitatively examine and analyze

the nature of defects found.

First, we compare the defects per trial ratio for CHARM

between POWER6 and POWER7. Figures 1 and 2 show the

ratio obtained in the different test cycles of each release on

POWER6 and POWER7, respectively. Note that POWER6 and

POWER7 test durations are the same for each release.

As can be seen in Figure 1, on POWER6 the ratio never

decreases below 0.5 and in fact is over 1.0 for the final

test cycle of each release. This may suggest that the rate of

defect discovery in the last test cycle can be an indicator

of stability and release quality. Concluding that reaching a

low defects per trial ratio in the last test cycle can foretell

product quality is proven by the POWER7 ratio data. For each

of the three releases, the final wave ratio is 0.3 or lower.

Furthermore, the behavior of the defects per trial ratio on

POWER7 perfectly correlates with CTD generated test trials.

The first trials produced by CTD contain higher numbers of

unique interactions. As a result, the defects per trial ratio

of the first wave is high, around 2.0 or above. As the test

waves progress, there are fewer interactions that remain to be

tested in the CTD generated tests that were spread across the

waves. New interactions are still uncovering new defects but

the discovery rate drops significantly. This means that with

CTD, more defects are found earlier during testing rather than

being randomly distributed along time, and therefore stability

can be reached faster. Notice that for POWER7 release 3 the

Fig. 3. System z z196 EDM System Test Defects Per Test Trail

downward slope was not as pronounced. This release included

new CTD model parameters and some new parameter values.

The State bad path parameter, the Workload parameter,
and additional values for Error_during_CHARM produced
new interactions that revealed defects. Trials were spread

across waves. As it happens, this was done in such a way

that unique interactions were postponed until later waves. This

led to a similar number of defects per trial across all release

3 waves. By this point in time, the POWER7 CHARM base

code was quite stable. This is seen in the overall lower ratio

for all waves. Though less pronounced, decreasing defects per

trial in the last wave did occur.

Next, we compare the defects per trial ratio for EDM be-

tween z196 and EC12, shown in Figures 3 and 4, respectively.

Rather than showing the ratio per test cycle as we did for

CHARM, we present the ratio per week. The reason is that as

opposed to CHARM, for EDM there was only one long test

cycle. For CHARM we do not present weekly defects per trial

ratio since this data is unavailable.

The same trend that was observed for CHARM testing

occurs also for EDM. The fit line and confidence interval using

the least squares method allows one to observe the defects per

test trial trend for both the z196 and EC12 EDM test efforts.

There is a good fit for the EC12 test but not for z196. This is

an indication that the EC12 EDM test was stabilized at the end

of test. The z196 EDM test did not display such a trend. To

further substantiate the claim that with CTD more defects are

found earlier during test, bivariate correlation was performed

for both the z196 and EC12 EDM tests using defects per

trial ratio and week of test. The expectation was that the ratio

should decrease as the weeks of test progressed. The EC12 test

analysis showed that there was a significant negative Pearson

correlation, with r=-0.746, n=17, p=0.001. Such a trend helps

emphasize the quality of the EDM trials. Over the course of the

test there are fewer defect revealing interactions remaining to

be exposed. With the correct test plan, the product stabilizes

109

Fig. 4. System z EC12 EDM System Test Defects Per Test Trail

and quality is achieved. The bivariate analysis of the z196

EDM data revealed no monotonic relation between week of

test and defects per trial ratio, with a Pearson correlation of

-0.285 and a Spearman’s rho correlation of -0.301. Neither is

statistically significant. This highlights an incomplete test plan

suffering through continued high defect discovery throughout

test leading to insufficient product stability.

Finally, we examine the defects found in system test of

CHARM and EDM and analyze their nature. For CHARM

POWER7, the first observation is that all the defects that were

found were new, rather than a rediscovery of known issues.

This fact is impressive considering that there was not much

new functionality on POWER7, meaning that CTD allowed to

extract more defects from a semi-stable POWER6 base code.

Another observation is that there is indeed correlation between

the new tests that came about from CTD usage and the defects

that were ultimately found and extracted from the product.

Root cause analysis showed that the defects discovered during

test were indeed triggered by the interactions that CTD tests

were exercising, rather than “accidentally” discovered during

test. This evidence strongly supports the reasoning of the CTD

approach in general, as well as the quality of the combinatorial

models in use for CHARM on POWER7.

For EDM on EC12, we first observed that over 75% of the

trials that came out of CTD found defects. This is especially

important considering the need to get the most out of each of

the trials due to their lengthy execution time. We then analyzed

the defects that were discovered and fixed both during test and

during field execution on z196 and EC12, and categorized

them based on the type of code they were associated with.

z196 test interaction omissions became visible as there were

50% more code categories associated with EDM field fixes

than from test fixes. The test trials that came out of CTD for

the EC12 system test covered all code categories that required

a fix on z196, plus twice as many other code categories.

Defects were found during system test on EC12 for about

two third of these code categories, including for almost all

Fig. 5. Power Systems CHARM Field Outcome Comparison

categories that experienced failures in the field. This indicates

that CTD helped close the coverage gaps experienced in the

z196 test, as well as significantly improve the overall coverage.

B. Improvement in Field Quality

We compare field results of CHARM on POWER7 to

those obtained on POWER6 in terms of the outcome of the

concurrent maintenance operation. There are two types of

possible failures of the maintenance operation, as witnessed on

POWER6. The first is an abort, where the operation cannot be

completed and there is a need to suspend it and retry at a later

stage after consulting with the customer. The second and more

severe failure type is a crash, where the entire machine comes

down. The goal for POWER7 was to eliminate the crashes

and absolutely minimize the aborts. As mentioned before, for

EDM we do not have field results yet, however preliminary

field evaluation is extremely positive.

As can be seen in Figure 5, dramatic quality improvement

with CHARM has been experienced in the field for POWER7.

While on POWER6 about 10% of the operations crashed, on

POWER7 crashes were eliminated for all but a handful of

cases. The percentage of aborts was reduced by half – from

20% to 10%, and respectively the success rate increased from

approximately 70% to 90%.

Understanding why there remains a set of aborted CHARM

operations on POWER7 requires further analysis. Figures 6

and 7 show the categories that are leading to the failures on

POWER6 and POWER7 respectively, and the percentage of

failures in each category. The Firmware Error category
is a direct indicator of test quality, while the other categories

point to factors outside testing control, ergo CTD’s ability to

influence. Note that we do not claim responsibility of CTD for

failures that are the result of design limitations. The reason is

that though design concerns can and in fact were discovered

during testing, many of them were theoretical ones that could

not be substantiated and fixed without field evidence.

Review of the categories shows that on POWER6, about

one third of the failures derive from firmware errors, on

which test has a direct impact. On POWER7 only 16%

of the failures are still attributable to firmware, a dramatic

improvement compared to POWER6, which leaves only little

room for further improvement. By way of comparison, on

POWER6 CHARM 10% of the overall operations failed due

110

Fig. 6. POWER6 CHARM Failure Categories

Fig. 7. POWER7 CHARM Failure Categories

to firmware errors, while on POWER7 CHARM only 1.6%

of the overall operations failed due to firmware errors. Given

the significantly higher success rate of POWER7 CHARM as

well as the significantly lower rate of failures attributable to

testing, we conclude that testing with CTD enabled reaching

the “right” set of test cases.

V. DISCUSSION

In the following we summarize the main lessons learned and

the main points of value identified in retrospect of our practical

experience with CTD throughout the past three years.

• Closing coverage gaps. CTD dramatically helped close
coverage gaps. One way to achieve this was by guiding

CTD towards covering the interactions pointed out by

field failures, and as a result revealing also many more

defects that were not yet experienced in the field.

• Affordability. In an industrial setting there are usually
fixed budgets and schedules that determine what is an

affordable test plan. CTD helped meet the affordability

requirement with maximum coverage, as it allowed to

easily generate alternative optimized test plans with dif-

ferent coverage levels, and choose between them. In addi-

tion, the need to perform manual modifications to the test

plan is common in practice. Tool-assisted modification of

the test plan is very useful and important to ensure that

loss of interactions is minimal and controlled.

• Level of abstraction. The main challenge in deploying
CTD at system test was to maintain the right level of

abstraction when identifying the parameters and choosing

their granularity. A model with too many parameters

would not only be unaffordable and extremely hard to

maintain, it would also overwhelm the human system

tester with too many test parameters.

• Importance of bad path. It is very important to consider
the bad path test space. At system level, the consequences

of failures are much less predictable than at function

level. Flexibility of the CTD tool in allowing to choose

the interaction level of bad path testing is very useful.

• Broader view of the test space. CTD helped broaden the
perceived view of the test space. Whereas in the past our

focus was on the feature under test only, CTD forced us to

think about the interactions surrounding the feature under

test. Field experience suggested that was the case, but the

structured CTD methodology raised the interactions to the

surface. Furthermore, even if we knew the interactions

that mattered, since there were so many of them, without

CTD we could not have come up with an affordable and

effective test plan, but rather with a very expensive one.

• Importance of root cause analysis. There was an on-
going real-time feedback loop involving the defect root

causes, the combinatorial model, and the tests that have

yet to be executed. This is especially valuable in an

iterative testing process, where the impact of root cause

analysis on further testing is immediate.

• Test progress, completion and stability. Our experience
showed that the CTD methodology worked in practice –

as fewer interactions were left to be tested, fewer defects

were left to be found. It provided a better sense of test

progress and completion. Furthermore, since the tests that

came out of the CTD tool were front-loaded, i.e., the

first tests contained more untested interactions than the

later ones, more defects were found earlier during the test

cycles, and as a result stability was reached faster.

One open question is how to verify that the test plan at hand

is sufficient to achieve the required product quality outcome

before any field results are available. This continues to be a

limitation of system test that it seems even CTD cannot solve.

VI. RELATED WORK

Existing studies on the application of CTD in practice

concentrate mostly on function, interface or configuration

level [14], [3], [24], [5], [7]. While we do not summarize

this work here, we note that none of these studies evaluates

the quality of the SUT following the application of CTD. The

one study we found referring to field quality following the

application of CTD is by Salem et al. [18], in which they

developed a generic logistic regression model of predicting

software failure based on the testing result of CTD.

111

We are aware of only two studies of CTD at system

level. In [11], CTD is applied to design system level test

cases for small, commercial satellite ground systems. While

a reduction in the number of required test cases is shown, no

quality evaluation is provided, nor a procedure for identifying

the test space parameters. In [2], factorial design was used

during system performance validation to give insight on which

factors, or interactions between factors, affect the performance

measure. Similarly to our test space evaluation process, factors

were added and factors which had no effect were removed.

Their work, however, did not contain an evaluation of the per-

formance of the system in the field following the application

of the proposed methodology, but rather evaluated only the

reduction in effort required for understanding the performance

influencing factors during system performance validation.

Guidelines for identifying the parameters and their values

are reported in [7]. Based on experience from four case studies

to which CTD at function or interface level was applied, the

authors recommend to use an iterative process and expert

knowledge to achieve a proper model of the test space. In [14],

a method is proposed for determining the parameters by

extracting them from the group of requirements in the scope

of the function under test. Grindal and Offutt [10] present

a basic eight-step process for input parameter modeling of

two different types: interface-based and functionality-based.

While providing some good modeling principles, their process

is custom-designed for function and interface level and does

not address the unique challenges of system level modeling.

Finally, we are unaware of any work that analyzes and

evaluates the results of CTD along time.

VII. SUMMARY AND FUTURE WORK

In this work we present a comprehensive analysis of the

use of CTD to design test cases at system level for features

of two large industrial products: IBM POWER7 and IBM

System z. Our study involves multiple under-explored aspects

of CTD, including application of CTD at system level, long

term use of CTD, the test space definition and evaluation

processes, refinement of the resulting test plan to fit available

resources, and evaluation of the quality of the features under

test following the application of CTD. Our analysis of field

results shows a dramatic improvement in the quality of the

features under test, and that most of the remaining failures are

due to factors on which testing has no impact.

In the future, we would like to further evaluate the results of

CTD on EDM by analyzing full field results, once available.

We would also like to analyze the few CHARM aborts on

POWER7 resulting from firmware errors, understand why they

escaped testing and how it could have been prevented.

Another direction we are exploring is the application of

CTD at design time. Since CTD, and specifically the process

for creating the test space definition, can uncover many design

issues, it makes perfect sense to apply CTD at design time

based on requirement documents. The obvious benefits are

revealing design issues as early as possible in the development

life cycle, and verifying the testability of the design.

Acknowledgment. The authors would like to thank Mike
Duron and Butch McCardle for their exemplary leadership

during the CHARM and EDM tests, respectively.

REFERENCES

[1] A. Arnold. Assessing the financial impact of downtime (26th april
2010). IT-Director.com Website, http://www.it-director.com/business/
costs/content.php?cid=12043. [Online; accessed 29-September-2013].

[2] T. Berling and P. Runeson. Efficient evaluation of multifactor dependent
system performance using fractional factorial design. IEEE Trans. Softw.
Eng., 29(9):769–781, 2003.

[3] K. Burroughs, A. Jain, and R.L. Erickson. Improved quality of protocol
testing through techniques of experimental design. In IEEE Intl. Conf. on
Record, Serving Humanity Through Communications, volume 2, pages
745–752, 1994.

[4] CHARM. http://www-03.ibm.com/systems/power/hardware/
whitepapers/770 780 cec.html. [Online; accessed 29-September-
2013].

[5] M. B. Cohen, J. Snyder, and G. Rothermel. Testing across configu-
rations: implications for combinatorial testing. SIGSOFT Softw. Eng.
Notes, 31(6):1–9, 2006.

[6] J. Czerwonka. Pairwise Testing in Real World. In Proc. 24th Pacific
Northwest Software Quality Conf. (PNSQC’06), pages 419–430, 2006.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-Based Testing in Practice. In Proc.
21st Intl. Conf. on Software Engineering (ICSE’99), pages 285–294.
ACM, 1999.

[8] IBM zenterprise EC12. http://www-03.ibm.com/systems/z/hardware/
zenterprise/zec12.html. [Online; accessed 29-September-2013].

[9] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler. An evaluation of
combination strategies for test case selection. Empirical Softw. Engg.,
11(4):583–611, 2006.

[10] M. Grindal and J. Offutt. Input parameter modeling for combination
strategies. In Proc. of the 25th Conf. on IASTED Intl. Multi-Conf.:
Software Engineering, SE’07, pages 255–260, 2007.

[11] J. Huller. Reducing time to market with combinatorial design method
testing. In Intl. Council on Systems Engineering (INCOSE), 2000.

[12] IBM Functional Coverage Unified Solution (IBM FOCUS). http://
researcher.watson.ibm.com/researcher/view project.php?id=1871. [On-
line; accessed 29-September-2013].

[13] P. Jorgensen. Software Testing A Craftsmans Approach. Auerbach, 3nd
edition, 2008.

[14] R. Krishnan, S. Murali Krishna, and P. Siva Nandhan. Combinatorial
testing: learnings from our experience. SIGSOFT Softw. Eng. Notes,
32:1–8, 2007.

[15] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software Fault Interactions
and Implications for Software Testing. IEEE Transactions on Software
Engineering, 30:418–421, 2004.

[16] G. Myers. The Art of Software Testing. ohn Wiley and Sons, 1979.
[17] C. Nie and H. Leung. A Survey of Combinatorial Testing. ACM Comput.

Surv., 43(2):11:1–11:29, 2011.
[18] A. M. Salem, K. Rekab, and J. A. Whittaker. Prediction of software

failures through logistic regression. Information Software Technology,
(12):781–789, 2004.

[19] I. Segall and R. Tzoref-Brill. Interactive refinement of combinatorial test
plans. In 34th Intl. Conf. on Software Engineering (ICSE’012), pages
1371–1374, 2012.

[20] I. Segall, R. Tzoref-Brill, and E. Farchi. Using Binary Decision
Diagrams for Combinatorial Test Design. In Proc. 20th Intl. Symp. on
Software Testing and Analysis (ISSTA’11), pages 254–264. ACM, 2011.

[21] I. Segall, R. Tzoref-Brill, and A. Zlotnick. Common patterns in
combinatorial models. In Proc. of the 2012 IEEE Fifth Intl. Conf. on
Software Testing, Verification and Validation, ICST ’12, pages 624–629,
2012.

[22] K.C. Tai and Y. Lie. A Test Generation Strategy for Pairwise Testing.
IEEE Transactions on Software Engineering, 28:109–111, 2002.

[23] P. Weygant. Clusters for High Availability. Prentice Hall, 2nd edition,
2005.

[24] A. W. Williams. Determination of test configurations for pair-wise
interaction coverage. In Proc. of the IFIP TC6/WG6.1 13th Intl. Conf. on
Testing Communicating Systems: Tools and Techniques, TestCom ’00,
pages 59–74, 2000.

112

