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ABSTRACT
The coverage of a test suite is often used as a proxy for
its ability to detect faults. However, previous studies that
investigated the correlation between code coverage and test
suite effectiveness have failed to reach a consensus about the
nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were
done with small or synthetic programs, making it unclear
whether their results generalize to larger programs, and some
of the studies did not account for the confounding influence
of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.

We have extended these studies by evaluating the relation-
ship between test suite size, coverage, and effectiveness for
large Java programs. Our study is the largest to date in the
literature: we generated 31,000 test suites for five systems
consisting of up to 724,000 lines of source code. We measured
the statement coverage, decision coverage, and modified con-
dition coverage of these suites and used mutation testing to
evaluate their fault detection effectiveness.
We found that there is a low to moderate correlation

between coverage and effectiveness when the number of test
cases in the suite is controlled for. In addition, we found that
stronger forms of coverage do not provide greater insight
into the effectiveness of the suite. Our results suggest that
coverage, while useful for identifying under-tested parts of a
program, should not be used as a quality target because it is
not a good indicator of test suite effectiveness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics—product metrics

General Terms
Measurement
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Coverage, test suite effectiveness, test suite quality
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1. INTRODUCTION
Testing is an important part of producing high quality

software, but its effectiveness depends on the quality of the
test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29, 34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that
have found a relationship between code coverage and fault
detection effectiveness [3, 6, 14–17,24,31,39].

Unfortunately, these studies do not agree on the strength
of the relationship between these test suite characteristics.
In addition, three issues with the studies make it difficult to
generalize their results. First, some of the studies did not
control for the size of the suite. Since coverage is increased
by adding code to existing test cases or by adding new test
cases to the suite, the coverage of a test suite is correlated
with its size. It is therefore not clear that coverage is related
to effectiveness independently of the number of test cases in
the suite. Second, all but one of the studies used small or
synthetic programs, making it unclear that their results hold
for the large programs typical of industry. Third, many of the
studies only compared adequate suites; that is, suites that
fully satisfied a particular coverage criterion. Since adequate
test suites are rare in practice, the results of these studies
may not generalize to more realistic test suites.

This paper presents a new study of the relationship between
test suite size, coverage and effectiveness. We answer the
following research questions for large Java programs:

Research Question 1. Is the effectiveness of a test suite
correlated with the number of test cases in the suite?

Research Question 2. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is ignored?

Research Question 3. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is held constant?

The paper makes the following contributions:

• A comprehensive survey of previous studies that inves-
tigated the relationship between coverage and effective-
ness (Section 2 and accompanying online material).
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Table 1: Summary of the findings from previous studies.

Citation Languages Largest Program Coverage Types Findings

[15, 16] Pascal 78 SLOC All-use, decision All-use related to effectiveness independently of
size; decision is not; relationship is highly non-
linear

[17] Fortran
Pascal

78 SLOC All-use, mutation Effectiveness improves with coverage but not until
coverage reaches 80%; even then increase is small

[14] C 5,905 SLOC All-use, decision Effectiveness is correlated with both all-use and
decision coverage; increase is small until high levels
of coverage are reached

[39] C <2,310 SLOC Block Effectiveness is more highly correlated with block
coverage than with size

[24] C 512 SLOC All-use, decision Effectiveness is correlated with both all-use and de-
cision coverage; effectiveness increases more rapidly
at high levels of coverage

[6] C 4,512 SLOC Block, c-use,
decision, p-use

Effectiveness is moderately correlated with all four
coverage types; magnitude of the correlation de-
pends on the nature of the tests

[3] C 5,000 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types; effectiveness rises steadily with coverage

[31] C
C++

5,680 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types but the correlations are not always strong

[19,37] C
Java

72,490 SLOC AIMP, DBB,
decision, IMP,
PCC, statement

Effectiveness correlated with coverage; effective-
ness correlated with size for large projects

[5] C 4,000 SLOC Block, c-use,
decision, p-use

None of the four coverage types are related to
effectiveness independently of size

[20] Java O(100, 000)
SLOC

Block, decision,
path, statement

Effectiveness correlated with coverage across many
projects; influence of project size unclear

• Empirical evidence demonstrating that there is a low
to moderate correlation between coverage and effective-
ness when suite size is controlled for and that the type
of coverage used has little effect on the strength of the
relationship (Section 4).

• A discussion of the implications of these results for de-
velopers, researchers and standards bodies (Section 5).

2. RELATED WORK
Most of the previous studies that investigated the link

between test suite coverage and test suite effectiveness used
the following general procedure:

1. Created faulty versions of one or more programs by
manually seeding faults, reintroducing previously fixed
faults, or using a mutation tool.

2. Created a large number of test suites by selecting from
a pool of available test cases, either randomly or accord-
ing to some algorithm, until the suite reached either a
pre-specified size or a pre-specified coverage level.

3. Measured the coverage of each suite in one or more
ways, if suite size was fixed; measured the suite’s size
if its coverage was fixed.

4. Determined the effectiveness of each suite as the frac-
tion of faulty versions of the program that were detected
by the suite.

Table 1 summarizes twelve studies that considered the

relationship between the coverage and the effectiveness of
a test suite, ten of which used the general procedure just
described. Eight of them found that at least one type of cov-
erage has some correlation with effectiveness independently
of size; however, not all studies found a strong correlation,
and most found that the relationship was highly non-linear.
In addition, some found that the relationship only appeared
at very high levels of coverage. For brevity, the older stud-
ies from Table 1 are described more fully in accompanying
materials1. In the remainder of this section, we discuss the
three most recent studies.
At the time of writing, no other study considered any

subject program larger than 5,905 SLOC2. However, a recent
study by Gligoric et al. [19] and a subsequent master’s the-
sis [37] partially addressed this issue by studying two large
Java programs (JFreeChart and Joda Time) and two large C
programs (SQLITE and YAFFS2) in addition to a number
of small programs. The authors created test suites by sam-
pling from the pool of test cases for each program. For the
large programs, these test cases were manually written by
developers; for the small programs, these test cases were auto-
matically generated using various tools. Suites were created

1http://linozemtseva.com/research/2014/icse/
coverage/
2In this paper, source lines of code (SLOC) refers to exe-
cutable lines of code, while lines of code (LOC) includes
whitespace and comments.
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in two ways. First, the authors specified a coverage level and
selected tests until it was met; next, the authors specified a
suite size and selected tests until it was met. They measured
a number of coverage types: statement coverage, decision
coverage, and more exotic measurements based on equivalent
classes of covered statements (dynamic basic block coverage),
program paths (intra-method and acyclic intra-method path
coverage), and predicate states (predicate complete cover-
age). They evaluated the effectiveness of each suite using
mutation testing. They found that the Kendall τ correla-
tion (see Section 4.2) between coverage and mutation score
ranged from 0.452 to 0.757 for the various coverage types
and suite types when the size of the suite was not considered.
When they tried to predict the mutation score using suite
size alone, they found high correlations (between 0.585 and
0.958) for the four large programs with manually written
test suites but fairly low correlations for the small programs
with artificially generated test suites. This suggests that the
correlation between coverage and effectiveness in real systems
is largely due to the correlation between coverage and size; it
also suggests that results from automatically generated and
manually generated suites do not generalize to each other.

A study by Gopinath et al. [20] accepted to the same con-
ference as the current paper did not use the aforementioned
general procedure. The authors instead measured coverage
and test suite effectiveness for a large number of open-source
Java programs and computed a correlation across all pro-
grams. Specifically, they measured statement, block, decision
and path coverage and used mutation testing to measure
effectiveness. The authors measured these values for approx-
imately 200 developer-generated test suites – the number
varies by measurement – then generated a suite for each
project with the Randoop tool [36] and repeated the mea-
surements. The authors found that coverage is correlated
with effectiveness across projects for all coverage types and
for both developer-generated and automatically-generated
suites, though the correlation was stronger for developer-
written suites. The authors found that including test suite
size in their regression model did not improve the results;
however, since coverage was already included in the model,
it is not clear whether this is an accurate finding or a result
of multicollinearity3.
As the above discussion shows, it is still not clear how

test suite size, coverage and effectiveness are related. Most
studies conclude that effectiveness is related to coverage, but
there is little agreement about the strength and nature of
the relationship.

3. METHODOLOGY
To answer our research questions, we followed the general

procedure outlined in Section 2. This required us to select:

1. A set of subject programs (Section 3.2);

2. A method of generating faulty versions of the programs
(Section 3.3);

3. A method of creating test suites (Section 3.4);

4. Coverage metrics (Section 3.5); and

5. An effectiveness metric (Section 3.6).

We then measured the coverage and effectiveness of the suites
to evaluate the relationship between these characteristics.

3The amount of variation ‘explained’ by a variable will be
less if it is correlated with a variable already included in the
model than it would be otherwise.

3.1 Terminology
Before describing the methodology in detail, we precisely

define three terms that will be used throughout the paper.

• Test case: one test in a suite of tests. A test case
executes as a unit; it is either executed or not executed.
In the JUnit testing framework, each method that starts
with the word test (JUnit 3) or that is annotated with
@Test (JUnit 4) is a test case. For this reason, we will
use the terms test method and test case interchangeably.

• Test suite: a collection of test cases.

• Master suite: the whole test suite that was written
by the developers of a subject program. For example,
the master suite for Apache POI contains 1,415 test
cases (test methods). The test suites that we create
and evaluate are strict subsets of the master suite.

3.2 Subject Programs
We selected five subjects from a variety of application

domains. The first, Apache POI [4], is an open source API
for manipulating Microsoft documents. The second, Closure
Compiler [7], is an open source JavaScript optimizing com-
piler. The third, HSQLDB [23], is an open source relational
database management system. The fourth, JFreeChart [25],
is an open source library for producing charts. The fifth,
Joda Time [26], is an open source replacement for the Java
Date and Time classes.
We used a number of criteria to select these projects.

First, to help ensure the novelty and generalizability of our
study, we required that the projects be reasonably large (on
the order of 100,000 SLOC), written in Java, and actively
developed. We also required that the projects have a fairly
large number of test methods (on the order of 1,000) so that
we would be able to generate reasonably sized random test
suites. Finally, we required that the projects use Ant as
a build system and JUnit as a test harness, allowing us to
automate data collection.

The salient characteristics of our programs are summarized
in Table 2. Program size was measured with SLOCCount [38].
Rows seven through ten provide information related to mu-
tation testing and will be explained in Section 3.3.

3.3 Generating Faulty Programs
We used the open source tool PIT [35] to generate faulty

versions of our programs. To describe PIT’s operation, we
must first give a brief description of mutation testing.
A mutant is a new version of a program that is created

by making a small syntactic change to the original program.
For example, a mutant could be created by modifying a
constant, negating a branch condition, or removing a method
call. The resulting mutant may produce the same output as
the original program, in which case it is called an equivalent
mutant. For example, if the equality test in the code snippet
in Figure 1 were changed to if (index >= 10), the new
program would be an equivalent mutant.

Mutation testing tools such as PIT generate a large number
of mutants and run the program’s test suite on each one.
If the test suite fails when it is run on a given mutant, we
say that the suite kills that mutant. A test suite’s mutant
coverage is then the fraction of non-equivalent mutants
that it kills. Equivalent mutants are excluded because they
cannot, by definition, be detected by a unit test.
If a mutant is not killed by a test suite, manual inspec-
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Table 2: Salient characteristics of our subject programs.

Property Apache POI Closure HSQLDB JFreeChart Joda Time

Total Java SLOC 283,845 724,089 178,018 125,659 80,462
Test SLOC 68,932 93,528 18,425 44,297 51,444
Number of test methods 1,415 7,947 628 1,764 3,857
Statement coverage (%) 67 76 27 54 91
Decision coverage (%) 60 77 17 45 82
MC coverage (%) 49 67 9 27 70

Number of mutants 27,565 30,779 50,302 29,699 9,552
Number of detected mutants 17,935 27,325 50,125 23,585 8,483
Number of equivalent mutants 9,630 3,454 177 6,114 1,069
Equivalent mutants (%) 35 11 0.4 21 11

int index = 0;

while (true) {

index++;

if (index == 10) {

break;

}

}

Figure 1: An example of how an equivalent mutant
can be generated. Changing the operator == to >=
will result in a mutant that cannot be detected by
an automated test case.

tion is required to determine if it is equivalent or if it was
simply missed by the suite4. This is a time-consuming and
error-prone process, so studies that compare subsets of a
test suite to the master suite often use a different approach:
they assume that any mutant that cannot be detected by
the master suite is equivalent. While this technique tends
to overestimate the number of equivalent mutants, it is com-
monly applied because it allows the study of much larger
programs.
Although the mutants generated by PIT simulate real

faults, it is not self-evident that a suite’s ability to kill mu-
tants is a valid measurement of its ability to detect real faults.
However, several previous and current studies support the
use of this measurement [2, 3, 10, 27]. Previous work has also
shown that if a test suite detects a large number of simple
faults, caused by a single incorrect line of source code, it
will detect a large number of harder, multi-line faults [28,32].
This implies that if a test suite can kill a large proportion of
mutants, it can also detect a large proportion of the more
difficult faults in the software. The literature thus suggests
that the mutant detection rate of a suite is a fairly good
measurement of its fault detection ability. We will return to
this issue in Sections 6 and 7.

We can now describe the remaining rows of Table 2. The
seventh row shows how many mutants PIT generated for each
project. The eighth row shows how many of those mutants
could be detected by the suite. The ninth row shows how
many of those mutants could not be detected by the entire
test suite and were therefore assumed to be equivalent (i.e.,
row 7 is the sum of rows 8 and 9). The last row gives the
equivalent mutants as a percentage of the total.

4Manual inspection is required because automatically deter-
mining whether a mutant is equivalent is undecidable [33].

3.4 Generating Test Suites
For each subject program, we used Java’s reflection API to

identify all of the test methods in the program’s master suite.
We then generated new test suites of fixed size by randomly
selecting a subset of these methods without replacement.
More concretely, we created a JUnit suite by repeatedly
using the TestSuite.addTest(Test t) method. Each suite
was created as a JUnit suite so that the necessary set-up and
tear-down code was run for each test method. Given this
procedure for creating suites, in this paper the size of our
random suites should always be understood as the number of
test methods they contain, i.e., the number of times addTest
was called.

We made 1,000 suites of each of the following sizes: 3
methods, 10 methods, 30 methods, 100 methods, and so on,
up to the largest number following this pattern that was less
than the total number of test methods. This resulted in a
total of 31,000 test suites across the five subject systems.
Comparing a large number of suites from the same project
allows us to control for size; it also allows us to apply our
results to the common research practice of comparing test
suites generated for the same subject program using different
test generation methodologies.

3.5 Measuring Coverage
We used the open source tool CodeCover [8] to measure

three types of coverage: statement, decision, and modified
condition coverage. Statement coverage refers to the fraction
of the executable statements in the program that are run
by the test suite. It is relatively easy to satisfy, easy to
understand and can be measured quickly, making it popular
with developers. However, it is one of the weaker forms of
coverage, since executing a line does not necessarily reveal
an error in that line.
Decision coverage refers to the fraction of decisions (i.e.,

branches) in the program that are executed by its test suite.
Decision coverage is somewhat harder to satisfy and measure
than statement coverage.
Modified condition coverage (MCC) is the most difficult

of these three to satisfy. For a test suite to be modified
condition adequate, i.e., to have 100% modified condition
coverage, the suite must include 2n test cases for every deci-
sion with n conditions5 in it [22]. This form of coverage is not
commonly used in practice; however, it is very similar to mod-

5A condition is a boolean expression that cannot be de-
composed into a simpler boolean expression. Decisions are
composed of conditions and one or more boolean operators.
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ified condition/decision coverage (MC/DC), which is widely
used in the avionics industry. Specifically, Federal Aviation
Administration standard DO-178B states that the most criti-
cal software in the aircraft must be tested with a suite that is
modified condition/decision coverage adequate [22]. MC/DC
is therefore one of the most stringent forms of coverage that
is widely and regularly used in practice. Measuring modified
condition coverage provides insight into whether stronger
coverage types such as MCC and MC/DC provide practical
benefits that outweigh the extra cost associated with writing
enough tests to satisfy them.
We did not measure any type of dataflow coverage, since

very few tools for Java can measure these types of coverage.
One exception is Coverlipse [9], which can measure all-use
coverage but can only be used as an Eclipse plugin. To the
best of our knowledge, there are no open source coverage tools
for Java that can measure other data flow coverage criteria
or that can be used from the command line. Since developers
use the tools they have, they are unlikely to use dataflow
coverage metrics. Using the measurements that developers
use, whether due to tool availability or legal requirements,
means that our results will more accurately reflect current
development practice. However, we plan to explore dataflow
coverage in future work to determine if developers would
benefit from using these coverage types instead.

3.6 Measuring Effectiveness
We used two effectiveness measurements in this study:

the raw effectiveness measurement and the normalized effec-
tiveness measurement. The raw kill score is the number of
mutants a test suite detected divided by the total number of
non-equivalent mutants that were generated for the subject
program under test. The normalized effectiveness measure-
ment is the number of mutants a test suite detected divided
by the number of non-equivalent mutants it covers. A test
suite covers a mutant if the mutant was made by altering a
line of code that is executed by the test suite, implying that
the test suite can potentially detect the mutant.

We included the normalized effectiveness measurement in
order to compare test suites on a more even footing. Suppose
we are comparing suite A, with 50% coverage, to suite B, with
60% coverage. Suite B will almost certainly have a higher
raw effectiveness measurement, since it covers more code and
will therefore almost certainly kill more mutants. However,
if suite A kills 80% of the mutants that it covers, while suite
B kills only 70% of the mutants that it covers, suite A is
in some sense a better suite. The normalized effectiveness
measurement captures this difference. Note that it is possible
for the normalized effectiveness measurement to drop when
a new test case is added to the suite if the test case covers a
lot of code but kills few mutants.

It may be helpful to think of the normalized effectiveness
measurement as a measure of depth: how thoroughly does the
test suite exercise the code that it runs? The raw effectiveness
measurement is a measure of breadth: how much code does
the suite exercise?
Note that the number of non-equivalent mutants covered

by a suite is the maximum number of mutants the suite could
possibly detect, so the normalized effectiveness measurement
ranges from 0 to 1. The raw effectiveness measurement,
in general, does not reach 1, since most suites kill a small
percentage of the non-equivalent mutants. However, note
that the full test suite has both a normalized effectiveness

measurement of 1 and a raw effectiveness measurement of
1, since we decided that any mutants it did not kill are
equivalent.

4. RESULTS
In this section, we quantitatively answer the three research

questions posed in Section 1. As Section 3 explained, we
collected the data to answer these questions by generating
test suites of fixed size via random sampling; measuring their
statement, decision and MCC coverage with CodeCover; and
measuring their effectiveness with the mutation testing tool
PIT.

4.1 Is Size Correlated With Effectiveness?
Research Question 1 asked if the effectiveness of a test suite

is influenced by the number of test methods it contains. This
research question provides a “sanity check” that supports the
use of the effectiveness metric. Figure 2 shows some of the
data we collected to answer this question. In each subfigure,
the x axis indicates suite size on a logarithmic scale while the
y axis shows the range of normalized effectiveness values we
computed. The red line on each plot was fit to the data with
R’s lm function6. The adjusted r2 value for each regression
line is shown in the bottom right corner of each plot. These
values range from 0.26 to 0.97, implying that the correlation
coefficient r ranges from 0.51 to 0.98. This indicates that
there is a moderate to very high correlation between normal-
ized effectiveness and size for these projects7. The results for
the non-normalized effectiveness measurement are similar,
with the r2 values ranging from 0.69 to 0.99, implying a high
to very high correlation between non-normalized effective-
ness and size. The figure for this measurement can be found
online8.

Answer 1. Our results suggest that, for large Java
programs, there is a moderate to very high correlation
between the effectiveness of a test suite and the number
of test methods it contains.

4.2 Is Coverage Correlated With Effectiveness
When Size Is Ignored?

Research Question 2 asked if the effectiveness of a test suite
is correlated with the coverage of the suite when we ignore
the influence of suite size. Tables 3 and 4 show the Kendall τ
correlation coefficients we computed to answer this question;
all coefficients are significant at the 99.9% level9. Table 3

6Size and the logarithm of size were used as the inputs.
7Here we use the Guildford scale [21] for verbal description,
in which correlations with absolute value less than 0.4 are
described as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 0.9 as
“high”, and over 0.9 as “very high”.
8http://linozemtseva.com/research/2014/icse/
coverage/
9Kendall’s τ is similar to the more common Pearson coef-
ficient but does not assume that the variables are linearly
related or that they are normally distributed. Rather, it
measures how well an arbitrary monotonic function could fit
the data. A high correlation therefore means that we can
predict the rank order of the suites’ effectiveness values given
the rank order of their coverage values, which in practice
is nearly as useful as predicting an absolute effectiveness
score. We used it instead of the Pearson coefficient to avoid
introducing unnecessary assumptions about the distribution
of the data.
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Figure 2: Normalized effectiveness scores plotted against size for all subjects. Each box represents the 1000
suites of a given size that were created from a given master suite.

gives the correlation between the different coverage types
and the normalized effectiveness measurement. Table 4 gives
the correlation between the different coverage types and the
non-normalized effectiveness measurement. For all projects
but HSQLDB, we see a moderate to very high correlation
between coverage and effectiveness when size is not taken
into account. HSQLDB is an interesting exception: when the
effectiveness measurement is normalized by the number of
covered mutants, there is a low negative correlation between
coverage and effectiveness. This means that the suites with
higher coverage kill fewer mutants per unit of coverage; in
other words, the suites with higher coverage contain test
cases that run a lot of code but do not kill many mutants
in that code. Of course, since the suites kill more mutants
in total as they grow, there is a positive correlation between
coverage and non-normalized effectiveness for HSQLDB.

Answer 2. Our results suggest that, for many large
Java programs, there is a moderate to high correlation
between the effectiveness and the coverage of a test suite
when the influence of suite size is ignored. Research
Question 3 explores whether this correlation is caused
by the larger size of the suites with higher coverage.

4.3 Is Coverage Correlated With Effectiveness
When Size Is Fixed?

Research Question 3 asked if the effectiveness of a test
suite is correlated with its coverage when the number of
test cases in the suite is controlled for. Figure 3 shows the
data we collected to answer this question. Each panel shows

Table 3: The Kendall τ correlation between nor-
malized effectiveness and different types of coverage
when suite size is ignored. All entries are significant
at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.75 0.76 0.77
Closure 0.83 0.83 0.84
HSQLDB −0.35 −0.35 −0.35
JFreeChart 0.50 0.53 0.53
Joda Time 0.80 0.80 0.80

Table 4: The Kendall τ correlation between non-
normalized effectiveness and different types of cov-
erage when suite size is ignored. All entries are sig-
nificant at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.94 0.94 0.94
Closure 0.95 0.95 0.95
HSQLDB 0.81 0.80 0.79
JFreeChart 0.91 0.95 0.92
Joda Time 0.85 0.85 0.85

the results we obtained for one project and one suite size.
The project name is given at the top of each column, while
the suite size is given at the right of each row. Different
coverage types are differentiated by colour. The bottom row
is a margin plot that shows the results for all sizes, while the
rightmost column is a margin plot that shows the results for
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Figure 3: Normalized effectiveness scores (left axis) plotted against coverage (bottom axis) for all subjects.
Rows show the results for one suite size; columns show the results for one project. N/A indicates that the
project did not have enough test cases to fill in that frame.

all projects. The figure shows the results for the normalized
effectiveness measurement; the non-normalized effectiveness
measurements tend to be small and difficult to see at this size.
The figure for the non-normalized effectiveness measurement
can be found online with the other supplementary material.

We computed the Kendall τ correlation coefficient between
effectiveness and coverage for each project, each suite size,
each coverage type, and both effectiveness measures. Since
this resulted in a great deal of data, we summarize the results
here; the full dataset can be found on the same website as
the figures.
Our results were mixed. Controlling for suite size always

lowered the correlation between coverage and effectiveness.
However, the magnitude of the change depended on the ef-
fectiveness measurement used. In general, the normalized
effectiveness measurements had low correlations with cover-

age once size was controlled for while the non-normalized
effectiveness measurements had moderate correlations with
coverage once size was controlled for.
That said, the results varied by project. Joda Time was

at one extreme: the correlation between coverage and ef-
fectiveness ranged from 0.80 to 0.85 when suite size was
ignored, but dropped to essentially zero when suite size was
controlled for. The same effect was seen for Closure when
the normalized effectiveness measurement was used.
Apache POI fell at the other extreme. For this project,

the correlation between coverage and the non-normalized
effectiveness measurement was 0.94 when suite size was ig-
nored, but dropped to a range of 0.46 to 0.85 when suite size
was controlled for. While this is in some cases a large drop,
a correlation in this range can provide useful information
about the quality of a test suite.
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A very interesting result is that, in general, the coverage
type used did not have a strong impact on the results. This
is true even though the effectiveness scores (y values) for each
suite are the same for all three coverage types (x values).
To clarify this, consider Figure 4. The figure shows two
hypothetical graphs of effectiveness against coverage. In
the top graph, coverage type 1 is not strongly correlated
with effectiveness. In the bottom graph, coverage type 2 is
strongly correlated with effectiveness even though the y-value
of each point has not changed (e.g., the triangle is at y = 0.8
in both graphs). We do not see this difference between
statement, decision, and MCC coverage, suggesting that the
different types of coverage are measuring the same thing.
We can confirm this intuition by measuring the correlation
between different coverage types for each suite (Table 5).
Given these high correlations, and given that the shape of
the point clouds are similar for all three coverage measures
(see Figure 3), we can conclude that the coverage type used
has little effect on the relationship between coverage and
effectiveness in this study.

Table 5: The Kendall τ and Pearson correlations be-
tween different types of coverage for all suites from
all projects.

Coverage Types Tau Pearson

Statement/Decision 0.92 0.99
Decision/MCC 0.91 0.98
Statement/MCC 0.92 0.97

Answer 3. Our results suggest that, for large Java
programs, the correlation between coverage and effec-
tiveness drops when suite size is controlled for. After
this drop, the correlation typically ranges from low to
moderate, meaning it is not generally safe to assume
that effectiveness is correlated with coverage. The corre-
lation is stronger when the non-normalized effectiveness
measurement is used. Additionally, the type of cov-
erage used had little influence on the strength of the
relationship.

5. DISCUSSION
The goal of this work was to determine if a test suite’s

coverage is correlated with its fault detection effectiveness
when suite size is controlled for. We found that there is
typically a moderate to high correlation between coverage
and effectiveness when suite size is ignored, and that this
drops to a low to moderate correlation when size is con-
trolled. This result suggests that coverage alone is not a
good predictor of test suite effectiveness; in many cases, the
apparent relationship is largely due to the fact that high
coverage suites contain more test cases. The results for Joda
Time and Closure, in particular, demonstrate that it is not
safe in general to assume that coverage is correlated with
effectiveness. Interestingly, the suites for Joda Time and
Closure are the largest and most comprehensive of the five
suites we studied, which might indicate that the correlation
becomes weaker as the suite improves.

In addition, we found that the type of coverage measured
had little impact on the correlation between coverage and
effectiveness. This is reinforced by the shape of the point
clouds in Figure 3: for any one project and suite size, the
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Figure 4: Hypothetical graphs of effectiveness
against two coverage types for four test suites. The
top graph shows a coverage type that is not corre-
lated with effectiveness; the bottom graph shows a
coverage type that is correlated with effectiveness.

clouds corresponding to the three coverage types are similar
in shape and size. This, in combination with the high cor-
relation between different coverage measurements, suggests
that stronger coverage types provide little extra information
about the quality of the suite.

Our findings have implications for developers, researchers,
and standards bodies. Developers may wish to use this
information to guide their use of coverage. While coverage
measures are useful for identifying under-tested parts of a
program, and low coverage may indicate that a test suite is
inadequate, high coverage does not indicate that a test suite
is effective. This means that using a fixed coverage value as
a quality target is unlikely to produce an effective test suite.
While members of the testing community have previously
made this point [13,30], it has been difficult to evaluate their
suggestions due to a lack of studies that considered systems of
the scale that we investigated. Additionally, it may be in the
developer’s best interest to use simpler coverage measures.
These measures provide a similar amount of information
about the suite’s effectiveness but introduce less measurement
overhead.
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Researchers may wish to use this information to guide
their tool-building. In particular, test generation techniques
often attempt to maximize the coverage of the resulting suite;
our results suggest that this may not be the best approach.

Finally, our results are pertinent to standards bodies that
set requirements for software testing. The FAA standard
DO-178B, mentioned earlier in this paper, requires the use of
MC/DC adequate suites to ensure the quality of the resulting
software; however, our results suggest that this requirement
may increase expenses without necessarily increasing quality.
Of course, developers still want to measure the quality

of their test suites, meaning they need a metric that does
correlate with fault detection ability. While this is still an
open problem, we currently feel that mutation score may be
a good substitute for coverage in this context [27].

6. THREATS TO VALIDITY
In this section, we discuss the threats to the construct

validity, internal validity, and external validity of our study.

6.1 Construct Validity
In our study we measured the size, coverage and effective-

ness of random test suites. Size and coverage are straight-
forward to measure, but effectiveness is more nebulous, as
we are attempting to predict the fault-detection ability of a
suite that has never been used in practice. As we described
in Section 3.3, previous and current work suggests that a
suite’s ability to kill mutants is a fairly good measurement
of its ability to detect real faults [2, 3, 10, 27]. This sug-
gests that, in the absence of equivalent mutants, this metric
has high construct validity. Unfortunately, our treatment
of equivalent mutants introduces a threat to the validity of
this measurement. Recall that we assumed that any mutant
that could not be detected by the program’s entire test suite
is equivalent. This means that we classified up to 35% of
the generated mutants as equivalent (see the final row of
Table 2). In theory, these mutants are a random subset of
the entire set of mutants, so ignoring them should not affect
our results. However, this may not be true. For example, if
the developers frequently test for off-by-one errors, mutants
that simulate this error will be detected more often and will
be less likely to be classified as equivalent.

6.2 Internal Validity
Our conclusions about the relationship between size, cov-

erage and effectiveness depend on our calculations of the
Kendall τ correlation coefficient. This introduces a threat to
the internal validity of the study. Kendall’s original formula
for τ assumes that there are no tied ranks in the data; that
is, if the data were sorted, no two rows could be exchanged
without destroying the sorted order. When ties do exist,
two issues arise. First, since the original formula does not
handle ties, a modified one must be used. We used the ver-
sion proposed by Adler [1]. Second, ties make it difficult to
compute the statistical significance of the correlation coef-
ficient. It it possible to show that, in the absence of ties,
τ is normally distributed, meaning we can use Z-scores to
evaluate significance in the usual way. However, when ties
are present, the distribution of τ changes in a way that de-
pends on the number and nature of the ties. This can result
in a non-normal distribution [18]. To determine the impact
of ties on our calculations, we counted both the number of
ties that occurred and the total number of comparisons done

to compute each τ . We found that ties rarely occurred: for
the worst calculation, 4.6% of the comparisons resulted in a
tie, but for most calculations this percentage was smaller by
several orders of magnitude. Since there were so few ties, we
have assumed that they had a negligible effect on the normal
distribution.
Another threat to internal validity stems from the possi-

bility of duplicate test suites: our results might be skewed if
two or more suites contain the same subset of test methods.
Fortunately, we can evaluate this threat using the informa-
tion we collected about ties: since duplicate suites would
naturally have identical coverage and effectiveness scores,
the number of tied comparisons provides an upper bound
on how many identical suites were compared. Since the
number of ties was so low, the number of duplicate suites
must be similarly low, and so we have ignored the small skew
they may have introduced to avoid increasing the memory
requirements of our study unnecessarily.
Since we have studied correlations, we cannot make any

claims about the direction of causality.

6.3 External Validity
There are six main threats to the external validity of our

study. First, previous work suggests that the relationship
between size, coverage and effectiveness depends on the dif-
ficulty of detecting faults in the program [3]. Furthermore,
some of the previous work was done with hand-seeded faults,
which have been shown to be harder to detect than both
mutants and real faults [2]. While this does not affect our
results, it does make it harder to compare them with those
of earlier studies.
Second, some of the previous studies found that a rela-

tionship between coverage and effectiveness did not appear
until very high coverage levels were reached [14,17,24]. Since
the coverage of our generated suites rarely reached very high
values, it is possible that we missed the existence of such
a relationship. That said, it is not clear that such a rela-
tionship would be useful in practice. It is very difficult to
reach extremely high levels of coverage, so a relationship that
does not appear until 90% coverage is reached is functionally
equivalent to no relationship at all for most developers.
Third, in object-oriented systems, most faults are usu-

ally found in just a few of the system’s components [12].
This means that the relationship between size, coverage and
effectiveness may vary by class within the system. It is there-
fore possible that coverage is correlated with effectiveness
in classes with specific characteristics, such as high churn.
However, our conclusions still hold for the common practice
of measuring the coverage of a program’s entire test suite.

Fourth, there may be other features of a program or a suite
that affect the relationship between coverage and effective-
ness. For example, previous work suggests that the size of a
class can affect the validity of object-oriented metrics [11].
While we controlled for the size of each test suite in this
study, we did not control for the size of the class that each
test method came from.
Fifth, as discussed in Section 3.2, our subjects had to

meet certain inclusion criteria. This means that they are
fairly similar, so our results may not generalize to programs
that do not meet these criteria. We attempted to mitigate
this threat by selecting programs from different application
domains, thereby ensuring a certain amount of variety in the
subjects. Unfortunately, it was difficult to find acceptable
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subjects; in particular, the requirement that the subjects
have 1,000 test cases proved to be very difficult to satisfy. In
practice, it seems that most open source projects do not have
comprehensive test suites. This is supported by Gopinath et
al.’s study [20], where only 729 of the 1,254 open source Java
projects they initially considered, or 58%, had test suites at
all, much less comprehensive suites.
Finally, while our subjects were considerably larger than

the programs used in previous studies, they are still not large
by industrial standards. Additionally, all of the projects
were open source, so our results may not generalize to closed
source systems.

7. FUTURE WORK
Our next step is to confirm our findings using real faults

to eliminate this threat to validity. We will also explore
dataflow coverage to determine if these coverage types are
correlated with effectiveness.

It may also be helpful to perform a longitudinal study that
considers how the coverage and effectiveness of a program’s
test suite change over time. By cross-referencing coverage
information with bug reports, it might be possible to isolate
those bugs that were covered by the test suite but were
not immediately detected by it. Examining these bugs may
provide insight into which bugs are the most difficult to
detect and how we can improve our chances of detecting
them.

8. CONCLUSION
In this paper, we studied the relationship between the

number of methods in a program’s test suite, the suite’s
statement, decision, and modified condition coverage, and the
suite’s mutant effectiveness measurement, both normalized
and non-normalized. From the five large Java programs we
studied, we drew the following conclusions:

• In general, there is a low to moderate correlation be-
tween the coverage of a test suite and its effectiveness
when its size is controlled for.

• The strength of the relationship varies between software
systems; it is therefore not generally safe to assume
that effectiveness is strongly correlated with coverage.

• The type of coverage used had little impact on the
strength of the correlation.

These results imply that high levels of coverage do not
indicate that a test suite is effective. Consequently, using a
fixed coverage value as a quality target is unlikely to produce
an effective test suite. In addition, complex coverage mea-
surements may not provide enough additional information
about the suite to justify the higher cost of measuring and
satisfying them.
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Abstract This paper presents results from an industrial study that applied input

space partitioning and semi-automated requirements modeling to large-scale indus-

trial software, specifically financial calculation engines. Calculation engines are used

in financial service applications such as banking, mortgage, insurance, and trading to

compute complex, multi-conditional formulas to make high risk financial decisions.

They form the heart of financial applications, and can cause severe economic harm

if incorrect. Controllability and observability of these calculation engines are low, so

robust and sophisticated test methods are needed to ensure the results are valid. How-

ever, the industry norm is to use pure human-based, requirements-driven test design,

usually with very little automation. The Federal Home Loan Mortgage Corporation

(FHLMC), commonly known as Freddie Mac, concerned that these test design tech-

niques may lead to ineffective and inefficient testing, partnered with a university to

use high quality, sophisticated test design on several ongoing projects. The goal was to

determine if such test design can be cost-effective on this type of critical software.

In this study, input space partitioning, along with automation, were applied with

the help of several special-purpose tools to validate the effectiveness of input space

partitioning. Results showed that these techniques were far more effective (finding

more software faults) and more efficient (requiring fewer tests and less labor), and the

managers reported that the testing cycle was reduced from five human days to 0.5.

This study convinced upper management to begin infusing this approach into other

software development projects.

Keywords software testing ⋅ industrial study ⋅ input space partitioning

1 Introduction

A test criterion is a set of engineering rules that define specific requirements on design-

ing tests, such as cover every branch, or ensuring that every variable definition reaches

a use. Although researchers and academics have been publishing test criteria for years,

the authors have had difficulty convincing practitioners that the cost of investing in

criteria-based test design will lead to better software with acceptable cost. This is a

classic return on investment concern: Will the benefits of investing in new technol-

ogy outweigh the costs? These doubts were expressed by a project manager to a test

manager at a large financial services company, the Federal Home Loan Mortgage Cor-

poration (FHLMC), commonly known as Freddie Mac. In response, the test manager

proposed to partner with a researcher at a university to choose appropriate test criteria,

build support test automation tools, and compare the results of applying test criteria

with the results of Freddie Mac’s standard test process (manual requirements-based

testing). The research question has three simple parts: (1) Can input space partitioning

and semi-automated requirements modeling succeed in a real industrial setting with
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real testers? (2) Can such an approach result in more fault detection during testing,

and therefore better software? (3) Can real testers accept this approach for practical

use?

Results from the resulting industrial study on four separate software systems are

reported here. The project has been very successful. In all four systems, the criteria-

based approach yielded fewer tests that found more defects. All four systems have

reported zero defects since release. Additionally, the test managers reported that the

testing cycle was reduced from five human days to 0.5.

This paper reports what we choose to call an “industrial study,” rather than a

controlled experiment. The study was carried out at an industrial site and we had to

play by industrial rules. This is both a strength of the paper and a weakness. This is

a strength because this study shows that input space partitioning (ISP) [2,8] can be

used effectively, with a positive return on investment, in a realistic setting as opposed

to a laboratory. But the context also creates a weakness because we were not able to

do all the things we would have liked to do. This is common in industrial studies, and

we believe the field needs more industrial studies, not fewer.

Financial services like banking, mortgage, and insurance contain subsystems that

involve complex calculations. Pricing loans, amortizing loans, asset valuations, account-

ing rules, interest calculations, pension calculations, and generating insurance quotes

are common calculations used by these applications. Calculations embedded into these

systems differ in their calculation algorithms. In a particular application, different cal-

culators may need to perform multiple calculations to achieve the business’s objective.

These calculators together are called the calculation engine. In most cases, several

calculations need to be performed in sequence or in parallel to get the final output.

The logic for these calculations usually resides deep in the business layer of software,

which means that system-level inputs must travel through several layers of software and

numerous intermediate computations before reaching the financial calculations being

tested. This makes it difficult for system testers to control the values of the inputs to

the actual financial calculations, that is, controllability [7] is low. Likewise, the results

of the financial calculations are processed through several layers of software, making

it difficult to see the direct results of the individual financial calculations. That is,

observability [7] is also low. Software that exhibits low controllability and observability

is notoriously hard to effectively evaluate during system testing [7]. (These concepts

are defined more carefully in the next subsection.)

Financial models are a common form of calculation engine. Financial modeling is

the process by which an organization constructs a financial representation of some or all

of its financial aspects. The model is built by calculations, and then recommendations

are made by using the model. The model may also summarize particular events for the

user and provide direction regarding possible actions or alternatives.

Financial models can be constructed by computer software or with a pen and

paper. What is most important, however, is not the kind of technology used, but the

underlying logic that encompasses the model. A model, for example, can summarize

investment management returns, such as the Sortino ratio [16], or it may help estimate

market direction, such as the Federal Reserve model [12].

It is essential to test financial models thoroughly as they are business critical and

may cause enormous harm to the business if wrong. The common system test strategy is

to derive test requirements from black box testing techniques such as boundary value

analysis, and error guessing. Unfortunately, these are not always effective. Effective
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test methods need to be used to overcome the calculations’ low observability and

controllability.

This paper presents an industrial study. Input space partitioning was used to test

several major pieces of functionality in large financial calculation engines at a major

financial services company (Freddie Mac). As far as we know, this is the first industrial

study using input space partitioning. The first author is a test manager in charge of

testing these calculation engines and performed this study under the direction of the

second author. Section 2 describes some of the key ideas for how calculation engines

work. Section 3 describes the testing approaches that were used in this study. Section

4 presents the software systems that were tested and section 5 gives the testing results.

Section 6 provides conclusions and recommendations.

2 Characteristics of Calculation Engines

Calculation logic is implemented in the business layer of multi-layer software systems

(usually deployed on local web servers). All calculations are performed on the server;

the client is abstracted from the processing. Therefore the user does not observe any

processing behind the graphical user interface. For example, a user supplies inputs for

an insurance quote and the application generates the insurance quote by performing

various calculations on the server. Then the user enters different characteristics of the

borrower and the application generates the interest rate by applying different rules on

the server. The application takes different inputs from taxpayers and generates the tax

owed by performing other calculations on the server. Calculation engines feature some

characteristics of component-based applications, reducing their testability.

In general terms, testability refers to how hard it is to test a software component

[2,7,17]. Testability is largely influenced by two aspects of software, controllability and

observability. Ammann and Offutt [2] define software observability and controllability

as follows. Software observability is how easy it is to observe the behavior of a program

in terms of its outputs, effects on the environment, and other hardware and software

components. Software controllability is how easy it is to provide a program with the

needed inputs in terms of values, operations, and behaviors. Because calculations are

performed on the server, many inputs are taken from other software components as

shared through persistent data on disk or in-memory objects, and calculations often

depend on the time of the day or day of the month, both observability and controlla-

bility are quite low for this software. Problems with observability and controllability

are usually addressed by test interfaces or test drivers, which let testers assign specific

values to variables during execution, and view values at intermediate steps. Freddie

Mac had never used test interfaces before this project.

2.1 Specification Formats for Calculation Engines

Requirements for calculation engines are specified in various forms and in combina-

tions of plain English, use cases, mathematical expressions, logical expressions, busi-

ness rules, procedural design, and mathematical formulas. These requirements are very

complicated for both developers and testers.

Defects in calculation engines not only lead to interruptions, but also can result

in legal battles and large financial liabilities. These incidents create headlines in news-
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papers, causing severe damage to the corporations’ reputations. Therefore, strict IT

controls are put into place around these applications, and they are subjected to regular

auditing.

Although users most commonly see results of financial calculation engines with

two digits of decimal precision (dollars and pennies in the USA), most calculations

are performed with floating point arithmetic for greater precision. This brings up the

possibility of errors in truncation and rounding. Many applications maintain constant

word size through the basic arithmetic operations. Multiplication is the biggest concern

as multiplying two N-bit data items yields a 2N-bit product, so truncation limits must

be defined in the specifications. Therefore tests must be designed to evaluate precision,

truncation, and rounding of the calculated values.

2.2 Characteristics of Design and Implementation of Calculation Engines

Calculation engines have several unusual characteristics that complicate test design,

test automation, and test execution. Values such as interest rates, S&P index, NYMEX

index, etc. change constantly during a business day depending on market factors. The

calculations use some of these values in their computations. These values are updated

constantly into tables called pricing grids. Calculation systems then pull the current

values when needed. When designing tests, this factor can be abstracted or discounted,

as this need not be tested every time.

Attributes for calculations are often received from external systems (upstream). The

systems under test process the calculations and may send the data to external (down-

stream) systems that consume the outcomes. For example, Asset valuation calculations

receive inputs from Sourcing systems and pass the data to the Subledger and General

Ledger downstream systems, where accounting calculations (principles) are applied and

the final result will be reflected in financial reports at the end of the period. A com-

mon problem is that the requirements may not clearly specify the source of the data

for calculations. Thus, understanding the technical specifications is essential–especially

in determining the preconditions and designing prefix values (values needed to put the

software into the correct state to run the test values).

Understanding the events and conditions that determine the flow in the calculations

also helps design effective tests. For example, the Interest Rate type (Fixed, ARM, or

Balloon) determines which path to follow. Calculations take different paths based on

these inputs.

Algorithms for amortization, pricing, insurance quotations, asset valuations, and

accounting principles are standard. For example, amortization methods could be based

on the diminishing balance or flat rate over a preset duration. Knowing how these algo-

rithms work is necessary to determine the expected outputs for the tests. For example,

MS-Excel has standard amortization functions, which can be used as a calculation

simulator instead of building simulator programs.

In almost all the applications, most calculations are implemented either as a batch

process or an online transaction that occurs in the business layer. Understanding the

architecture helps isolate the testable requirements from non-testable requirements.

Even though the entities that participate in the calculations have many important

attributes, it is common for only a few to be involved in the calculations. For example,

the loan pricing calculation, Loan and Master Commitment, have 140 and 35 attributes
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that are available to the calculations, but only seven are actually used in the calcula-

tions. Identifying the influential attributes, and their constraints, is necessary to build

effective tests. The acceptable values for each attribute and their constraints are de-

fined in the form of business rules. When tests are built, test inputs need to include

values for the remaining attributes to make a test case executable.

Calculation engines send and receive values between each other. In many cases, de-

bugging the incorrect output is tedious as it involves checking all intermediate values

in the flow. The same set of inputs may yield different outputs when the calculations

are performed at different times. The reasons could be: (a) input values are interpreted

differently, (b) interest values could be changed in different time periods, (c) interme-

diate values could have changed, (d) business rules would have changed in the due

course, etc. The systems do not store the intermediate values, but intermediate values

are essential in diagnosing problems.

Applications that involve these calculations often need to be tested for different

business cycles; daily, monthly, quarterly, and annually. Therefore, the same tests may

need to be executed more than once.

3 Test Approach

As said in section 1, calculation engines have low controllability and observability,

which makes it more difficult to design and automate complete tests. Depending on

the software, the level of testing, and the source of the tests, the tester may need

to supply other inputs to the software to affect controllability and observability. Two

common practical problems associated with software testing are how to provide the

right values to the software, and observing details of the software’s behavior. Offutt

and Ammann [2] use these two ideas to refine the definition of a test case as follows.

A prefix value is any input necessary to put the software into the appropriate state to

receive the test case values (related to controllability). A postfix value is any input that

is needed after the test case values to terminate the program or see the output (related

to observability).

A test case is the combination of all these components (test case values, prefix

values, and postfix values), plus expected results. This paper uses “test case” to refer

to both the complete test case and test case values.

This study tested the calculation engines using two different methods: input space

partitioning and requirements modeling. This was a project decision made by the test

manager at the beginning of the project.

3.1 Input Space Partitioning

Input space partitioning (ISP) divides an input space into different partitions and

each partition consists of different blocks [2,8]. ISP can be viewed as defining ways to

divide the input space according to test requirements. The input domain is defined in

terms of possible values that the input parameters can have. The input domain is then

partitioned into regions that are assumed to contain equally useful values for testing.

Consider a partition q over a domain D. The partition q defines the set of equiva-

lence classes, called blocks Bq. The blocks are pairwise disjoint, that is:

bi ∩ bj = ∅, i ∕= j; bi, bj ∈ Bq
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and together the blocks cover the domain D, that is:∪
b∈Bq

b = D

ISP started with the category partition method [14,15]. Category partition was

defined to have six manual steps to identify input space partitions and convert them

to test cases.

1. Identify functionalities, called testable functions, which can be tested separately.

2. For each testable function, identify the explicit and implicit variables that can affect

its behavior.

3. For each testable function, identify characteristics or categories that, in the judg-

ment of the test engineer, are important factors to consider in testing the function.

This is the most creative step in this method whose result will vary depending on

the expertise of the test engineer.

4. Choose a partition, or set of blocks, for each characteristic. Each block represents

a set of values on which the test engineer expects the software to behave similarly.

Well-designed characteristics often lead to straightforward partitions.

5. Choose a test criterion and generate the test requirements. Each partition con-

tributes exactly one block to a given test requirement.

6. Refine each test requirement into a test case by choosing appropriate values for the

explicit and implicit variables.

This project uses several ISP criteria: base choice, multiple base choice, and pair-

wise.

The base choice (BC) criterion emphasizes the most “important” values. A base

choice block is selected for each partition, and a base test is formed by using any value

from each base choice for each partition. Subsequent tests are chosen by holding all

but one base choice constant and using each non-base choice in each other parameter.

All values in a block are treated identically, so the subsequent discussion sometimes

uses the term “block” to refer to the specific value from the block that is used in tests.

For example, if there are three partitions with blocks [A, B], [1, 2, 3], and [x, y],

suppose base choice blocks are “A,” “1” and “x.” Then the base choice test is (A, 1,

x), and the following tests would be needed:

(B, 1, x)

(A, 2, x)

(A, 3, x)

(A, 1, y)

A test suite that satisfies BC will have one base test, plus one test for each remaining

block for each partition. Base choice blocks can be the simplest, the smallest, the first

in some ordering, or the most likely from an end-user point of view. Combining values

from more than one invalid block is considered to be less useful because the software

often recognizes the value from one block and then negative effects of the others are

masked. Which blocks are chosen for the base choices becomes a crucial test design

decision. It is important to document the strategy that was used so that further testing

can reevaluate that decision.

Sometimes it is difficult to choose just one block as a base choice. The multiple base

choices (MBC) criterion requires at least one, but allows more than one, base choice
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block for each partition. Base tests are formed by using each base choice for each

partition at least once. Subsequent tests are chosen by holding all but one base choice

constant for each base test and using each non-base choice in each other parameter.

In the pairwise (PW) criterion, a value from every block for each partition must

be combined with a value from every block for every other partition.

For example, if the model has three partitions with blocks [A, B], [1, 2, 3], and [x,

y], then PW will need tests to cover the following combinations:

(A, 1) (B, 1) (1, x)

(A, 2) (B, 2) (1, y)

(A, 3) (B, 3) (2, x)

(A, x) (B, x) (2, y)

(A, y) (B, y) (3, x)

(3, y)

Pairwise testing allows the same test case to cover more than one unique pair of

values. So the above combinations can be combined in several ways, including:

(A, 1, x) (B, 1, y)

(A, 2, x) (B, 2, y)

(A, 3, x) (B, 3, y)

(A, ∼, y) (B, ∼, x)

The tests with “∼” mean that any block can be used. A test set that satisfies PW

testing is guaranteed to pair a value from each block with a value from each other

block. In general, pairwise testing does not subsume base choice testing.

3.2 Requirements Modeling

In Freddie Mac’s standard testing process, testers develop tests from requirements by

informally considering the behavior of the software and guessing what might go wrong.

No test criterion is used, no model of the input space or the software is constructed,

and there is no notion of coverage. Most tests are not designed before the software is

tested; the testers read the requirements, then sit down in front of the software and

started running it. Beizer [5], Myers [13] and others extensively discussed this type of

behavioral testing from requirements, which allows domain knowledge to be directly

used in test design.

As part of this project, we developed a special purpose automated tool called

the Fusion Test Modeler (FTM), which helped use the requirements for calculation

engines to create a model for generating tests case (a test model). FTM also provided

traceability from the functional requirements to the test requirements to the tests.

The requirements of the calculation engines are expressed in a mixture of event

sequences, action sequences, business rules, use cases, plain text in English, logical

expressions, and mathematical expressions. For example, pricing a loan or a contract

occurs when some events occur, such as creating the loan, changing the time period,

changing the interest rates, and/or changing the fee rates. Amortization calculations

depend on the time period of the loan and characteristics of the loan, such as ARM

or fixed. Asset valuation triggers a different set of calculations based on the Asset

type, e.g., whole loans, swaps, or bonds. Some specifications are defined in the form
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of pseudo-code and procedural design, especially for financial models, which are often

bought as third-party tools and integrated into the Freddie Mac systems. For others,

complex calculations are embedded in the sequence of steps in use cases.

The calculation requirements are naturally hierarchical, starting with the overall

result needed at the top, then subcalculations, down through individual values at lower

levels in the hierarchy. Thus the calculation requirements were modeled for testing as

a tree. The test models were extended and decomposed to trace different paths in the

models. A typical test requirement is met by visiting a particular node or edge or by

touring a particular path. These decomposed paths simplify the complex or obscure

behaviors of the calculation engines. Each path in the test models can be refined to a

unique test case mapping to the test requirements.

Figure 1 shows the high level process used to test the calculation engines using the

modeling technique. The first and second steps were crucial in this process to model

the requirements. The Fusion Test Modeler helped model the requirements. The second

step derived the test scenarios from the model. FTM automatically generated these test

scenarios. Steps 4, 5, and 8 were automated with the help of other tools.

Fig. 1 Modeling process to test calculation engines

The test modeling process followed 10 steps, as adapted from Beizer [5].

1. Identify the testable functions (by hand).

2. Examine the requirements and analyze them for operationally satisfactory com-

pleteness and self-consistency (by hand).

3. Confirm that the specification correctly reflects the requirements, and correct the

specification if it does not (by hand).

4. Rewrite the specification as a sequence of short sentences (using FTM).

5. Model the specifications using FTM.

6. Verify the test model (by hand).
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7. Select the test paths (automated by FTM).

8. Sensitize the selected test paths; that is, design input values to cause the software

to do the equivalent of traversing the selected paths (by hand).

9. Record the expected outcome for each test. Expected results are specified in FTM.

10. Confirm the path (automated by FTM). The prime path coverage criterion [3] is

applied to traverse the model’s paths.

The algorithms in calculation engines are specified in a variety of formats. Re-

quirements are translated into semi-formal functional specifications. Specifications can

be described as finite state machines, state-transition diagrams, control flows, process

models, data flows, etc. Financial models are sometimes in the form of the source code,

usually when systems are to be built to replicate existing financial models, so the source

code becomes the specifications. Sometimes algorithms defined in Visual Basic may be

re-implemented in Java, so the Visual Basic version is used as the specification. They

are also expressed in logical expressions, use cases, program structures, sequence of

events, and sequence of actions.

The tree structure was also used to model logical expressions for testing, as ex-

tracted from if and case statements, and for and while loops. Multiple-clause predicates

were mapped onto a tree structure so that FTM could be used.

UML use cases are also used to express and clarify software requirements. They

describe sequences of actions that software performs by expressing the workflow of a

computer application. They are often created early and are then used to start test

design early. Use cases are usually described textually, but can be expressed as graphs.

In this project we expressed use cases as graphs, then selected paths to embed in trees

for use by FTM. These graphs can be viewed as transaction flows [5]. Activity diagrams

can also be used to express transaction flows. FTM can be used to model a variety of

things, including state behavior, returning values, and computations.

3.3 The Fusion Test Modeler

FTM was developed to meet seven essential needs.

1. It provides traceability from the requirements to the test models to the tests.

2. It helps testers satisfy internal audit requirements. The testing process must be

transparent, the test cases must be well documented, and changes should be applied

in a controlled manner. FTM allows test analysts to keep track of changes, and also

captures who executed the tests and when they were executed. Models are saved

in XML files that are under configuration management.

3. It allows multiple test specification formats.

4. It must be easy to learn with a minimum of training. The modeling technique

chosen is simple so that the business community, testers, and analysts from non-

engineering backgrounds can learn and model the requirements quickly. They can

also analyze the requirements with the help of models.

5. FTM must preserve the mental models used to create the test requirements. Testers

often build mental models and then destroy them once they understand the require-

ments. FTM allows users to build rough drafts of the test models and preserve them

for future analysis. The tool helps the users evolve their analysis into a model that

captures the testable requirements. It also supports impact analysis when changes

need to be made to the software, and helps transition knowledge when new team

members arrive.
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6. It must complement existing tools used to manage testing.

7. FTM must satisfy graph-based coverage criteria (in this case, all paths in the tree).

FTM stores test requirements in a spreadsheet, and uses Java utilities to read

and generate the base choice and multiple base choice test requirements from the

spreadsheet. The pairwise test requirements were generated by a PERL program [4].

Values were obtained from upstream software components and by hand. A simulator,

written as Excel functions, was used to generate the expected results. A disadvantage

of simulators is that it is difficult to judge whether the output of the simulator or the

output of the system-under-test is correct. Differences must be resolved by a domain

expert. A second disadvantage is of the same error appearing in both the simulator

and the system-under-test.

Rational TestManager stores test data in data pools. A data-driven testing tech-

nique was applied to automatically enter the test data into the system by the tool.

Logic validation was not added to the automation scripts to maximize the processing

time of the data entry. Automation scripts were just simulated to enter the data and

were scheduled on different machines to enter data in parallel. When the test data

was input to the system, calculation-triggering events were identified and automation

scripts trigger the calculations. Events to trigger the calculations were also incorpo-

rated into the script, so that every time the event triggers, the calculation engine was

activated and performs calculations at the business layer, storing the results in the

database.

All actual results were stored in a database. In general, the final state of the actual

results generated by the calculation engines were stored in the database, and internal

states may be logged into execution logs for later debugging. It may be required to

refer to the execution logs for the internal states and values of the actual results if they

deviate from the expected results. One of our application study used nine calculators

and each calculator received the inputs from one or more of the other calculators. We

suggested to the programmers that they generate the execution logs with the interme-

diate values of the calculation variables to help debug incorrect expected output. A

Java utility was written to search all the intermediate states of calculation variables.

The program scanned 10 MB of the execution logs in about 10 seconds and wrote the

expected intermediate outputs into an Excel spreadsheet.

Financial calculations often produce hundreds of outputs that need to be compared

frequently, thus an automated comparison tool was developed to examine and compare

the backend results with the spreadsheet. The comparator compares the results, show-

ing the differences for failures and successes for passes. The comparator compares the

left-hand side and right-hand side of the results in different forms: spreadsheet to

spreadsheet, spreadsheet to database, and spreadsheet to text file.

Sometimes the actual results (intermediate) are obtained from the program execu-

tion logs. These logs store values for intermediate results and final results are stored in

the database. The comparator searches for the desired text in the execution logs and

required fields in the database. The comparator tool discards unneeded text strings

before making comparisons of the output results. Actual and expected results may not

always be exactly the same due to roundoff, so the expected outputs include tolerance

limits. For example, a variation of at most one dollar in a million is acceptable if the

variation is caused due to drifts in floating point accuracy.
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4 Software Systems Studied

This paper presents results from testing four separate industrial systems. They are

described here, and results for each are given in the next section. All are complicated

financial calculation engines that perform operations that may not be familiar to the

readers. More details are in Alluri’s MS thesis [1]. The test criteria were not applied in

a comparative manner, but in a complementary manner, so for example, pairwise test-

ing was used for particularly complicated subsystems and to handle conflicts between

partitions. The specific test criteria used depended on characteristics of the systems.

This paper shows details of the test designs for the first software system, but omits

those details for the other systems to save space. We have not been able to find other

industrial studies using input space partitioning.

4.1 Contract Pricing

Contract Pricing prices contracts when contracts are created in the Loan Purchase

Contract (LPC) subsystem and reprices the contracts when contracts are modified or

upon user requests. Two types of contracts are cash contracts and swap contracts.

This system tested swap contracts. The requirements for the pricing calculations of

swap contracts are specified in the form of use cases. This use case calculates the swap

GFee, Buyup max, Buydown max, Total adjusted GFee for fixed rate, Guarantor, and

Multilender ARM swap contracts.

This project tested the software in two stages. The first stage tested the larger im-

port contracts feature. The second stage tested a smaller number of contract attributes

that were isolated to test just the contract pricing feature. Freddie Mac’s selling system

consists of different subsystems: LPC, NCM, TPA, Pooling, Pricing, and OIM. Each

subsystem contains multiple features and is designed to abstract their functionalities

from the others. The contract pricing feature (stage 2) receives inputs from the import

contracts feature (stage 1) of the LPC subsystem that facilitates importing the con-

tracts. The import contracts feature had almost 200 business rules, and stage 1 testing

resulted in 92 base choice and 207 pairwise tests1. The stage 2 testing resulted in 15

base choice, 30 multiple base choice, 23 pairwise tests, and 27 requirements modeling

tests. For space reasons, this paper gives more test details for the stage 2 testing than

stage 1.

In the first stage (important contracts), 29 attributes were identified and used to

create 29 partitions for input space partitioning. The blocks for each partition were

based on the system specifications and are shown in Table 1. Tests were designed using

the base choice coverage criterion and constraints among the partitions were validated

using the pairwise coverage criterion.

In the second stage (contract pricing), partitions required for just the contract

pricing calculations were separated and then the base choice, multiple base choice,

and pairwise criteria were applied. Problem analysis showed that of the inputs de-

fined earlier, only seven inputs, Rate option, GFee, Remittance option type, GFee grid

remittance, LLGFee eligibility, BUBD eligibility, and Max Buyup, control the calcula-

1 We used Bach’s PERL program to generate pairwise test requirements [4]. This is probably
more tests than necessary and more modern tools, such as NIST’s ACTS [11], would probably
create far fewer tests.
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Table 1 Contract Partitions and Blocks

Partition Partition Name Blocks

1 Execution Option GU, ML, NULL EO, *EO

2 Rate Option FI, AR, NULL RO, *RO

3 Master Commitment 9CHAR, 10CHAR, 8CHAR, NULL MC,

TBD

4 Security Product NUMBER, NULL SP, *SP

5 Security Amount DOLLAR ROUND, *DOL-

LAR FRACTION, *>100B, NULL SA

6 Contract Name CHAR (26), CHAR (25), CHAR (1),

NULL CONT

7 Settlement Date MMDDYYYY, *SD, NULL SD

8 Settlement Cycle Days 1, 3, 4, 5, *6, *2, NULL SCD

9 Security Coupon XX.XXX, XXX.XX, NULL SC, 26.000

10 Servicing Option RE, CT, *SO, NULL SO

11 Designated Servicer Num-

ber

NULL DS, DS, *DS

12 Minimum Required Ser-

vicing Spread

XX.XXX, NULL MRSS, XXX.XX

13 Minimum Servicing

Spread Coupon

XX.XXX, NULL MSSC, XXX.XX

14 Minimum Servicing

Spread Margin

XX.XXX, NULL MSSM, XXX.XX

15 Minimum Servicing

Spread Lifetime Ceiling

XX.XXX, NULL MSSLC, XXX.XX

16 Remittance Option AR, SU, FT, GO, *RT, NULL RT

17 Super ARC Remittance

Due day

0, 1, 2, 14, 15, 16, 30, NULL SARD

18 Required Spread GFee NULL RSG, *RSG, RSG

19 BUBD Program Type CL, NL, LL, *BUBD PT, NULL

20 BUBD Request Type NULL BUBD RT, BO, BU, BD, NO,

*BUBD RT

21 Contract Level

Buyup/Buydown

NULL CL BUBD, *CL BUBD, BU, BD,

NO

22 BUBD Grid Type NULL BUBD GT, *BUBD GT, A, A-

Minus, Negotiated 1 Grid

23 BU Max Amount 0, 1, *BU MAX AMT,

NULL BU MAX AMT, XXX.XXX

24 BD Max Amount 0, 1, *BD MAX AMT,

NULL BD MAX AMT, XXX.XXX

25 Pool Number NULL PNO, PNO, *PNO

26 Index Look Back Period NULL ILP, *ILP, ILP

27 Fee Type FT, *FT, NULL FT

28 Fee Payment Method Delivery Fee, GFee Add On, *FTM,

NULL FTM

29 Prepayment Penalty Indi-

cator

Y, N
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Table 2 Contract Pricing Partitions and Blocks

Partition Partition Name Blocks

1 Rate Option Fixed, ARM

2 GFee NotNull, Null

3 Remittance Option Type Gold, FirstTuesday, ARC, SuperARC

4 GFEE Grid Remittance

Option

Gold, FirstTuesday, ARC, SuperARC

5 MC LLGFee Eligibility Y, N

6 BUBD Eligibility Prohibited, Required, Optional

7 Max Buyup <12.5, =12.5, >12.5, NULL

Table 3 Contract Pricing Stage 2 Base Choice Tests

Test Rate GFee Remittance GFEE Grid MC BUBD Max
# Option Option Type Remittance LLGFee Eligibility Buyup

Option Eligibility
1

ARM NotNull Gold Gold Y Prohibited <12.5
Base

2 Fixed Null Gold Gold Y Prohibited <12.5
3 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
4 Fixed NotNull ARC Gold Y Prohibited <12.5
5 Fixed NotNull SuperArc Gold Y Prohibited <12.5
6 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
7 Fixed NotNull Gold ARC Y Prohibited <12.5
8 Fixed NotNull Gold SuperArc Y Prohibited <12.5
9 Fixed NotNull Gold Gold N Prohibited <12.5

10 Fixed NotNull Gold Gold Y Required <12.5
11 Fixed NotNull Gold Gold Y Optional <12.5
12 Fixed NotNull Gold Gold Y Prohibited =12.5
13 Fixed NotNull Gold Gold Y Prohibited >12.5
14 Fixed NotNull Gold Gold Y Prohibited NULL
15 Fixed NotNull Gold Gold Y Prohibited <12.5

tions. Therefore, the other partitions were not considered. The partitions and blocks

for contract pricing are shown in Table 2. Base choices are highlighted in bold.

Base Choice Tests: The base choice tests are shown in Table 3. There is one base

choice test (test #1), and then one test for each non-base block (14). In the non-base

choice tests, the non-base choice values are italicized.

Multiple Base Choice Tests: Multiple base choice (MBC) was also used in the

second stage for contract pricing. Table 4 shows these tests. The first base choice test is

the same as with BC, but a second base choice test was added (test #16). With MBC

and two base choice tests, exactly twice as many tests are needed.

Pairwise Tests: Pairwise testing was used to test constraints among the parame-

ters. This resulted in 23 tests, as shown in Table 5. The “∼” means that the indicated

value cannot be used.

Requirements Modeling: The testable function for contract pricing was modeled

using the FTM tool. The contract pricing calculation simulator was built in Java. This

simulator program reads inputs from the spreadsheet, performs the calculations, and

then outputs the results into another spreadsheet. This resulted in 27 tests, as shown

in Table 6.
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Table 4 Contract Pricing Stage 2 Multiple Base Choice Tests

Test Rate GFee Remittance GFEE Grid MC BUBD Max
# Option Option Type Remittance LLGFee Eligibility Buyup

Option Eligibility
1

Fixed NotNull Gold Gold Y Prohibited <12.5
Base

2 ARM NotNull Gold Gold Y Prohibited <12.5
3 Fixed Null Gold Gold Y Prohibited <12.5
4 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
5 Fixed NotNull ARC Gold Y Prohibited <12.5
6 Fixed NotNull SuperArc Gold Y Prohibited <12.5
7 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
8 Fixed NotNull Gold ARC Y Prohibited <12.5
9 Fixed NotNull Gold SuperArc Y Prohibited <12.5

10 Fixed NotNull Gold Gold N Prohibited <12.5
11 Fixed NotNull Gold Gold Y Required <12.5
12 Fixed NotNull Gold Gold Y Optional <12.5
13 Fixed NotNull Gold Gold Y Prohibited =12.5
14 Fixed NotNull Gold Gold Y Prohibited >12.5
15 Fixed NotNull Gold Gold Y Prohibited Null

16
ARM NotNull SuperArc Gold N Prohibited =12.5

Base

17 Fixed NotNull SuperArc Gold N Prohibited =12.5
18 ARM Null SuperArc Gold N Prohibited =12.5
19 ARM NotNull Gold Gold N Prohibited =12.5
20 ARM NotNull FirstTuesday Gold N Prohibited =12.5
21 ARM NotNull ARC Gold N Prohibited =12.5
22 ARM NotNull SuperArc FirstTuesday N Prohibited =12.5
23 ARM NotNull SuperArc ARC N Prohibited =12.5
24 ARM NotNull SuperArc SuperArc N Prohibited =12.5
25 ARM NotNull SuperArc Gold Y Prohibited =12.5
26 ARM NotNull SuperArc Gold N Required =12.5
27 ARM NotNull SuperArc Gold N Optional =12.5
28 ARM NotNull SuperArc Gold N Prohibited <12.5
29 ARM NotNull SuperArc Gold N Prohibited >12.5
30 ARM NotNull SuperArc Gold N Prohibited Null

Running the Tests: All tests, both ISP and requirements modeling tests, were

given to the calculation simulator. The calculation simulator performs the calculations

and generates expected results for each test input, then writes them into a spreadsheet.

All tests were input to the system-under-test using Rational’s robot tool [10]. The

system has a feature called import contracts that allows all tests to be bundled into a

flat file and imported at once. When the contract is created, the system automatically

prices the contracts and stores the pricing results in the database as the actual results.

4.2 Loan Pricing

The Loan Pricing feature prices loans when they are newly created or after business

users request a reprice. Price recalculations for swap loans are triggered by data correc-

tions to one or more data elements used in the price calculation. These data corrections

can be one or both of the internal FM price definition terms (grid data), or seller deliv-

ered loan/contract data for fields that affect the price. Either type of data correction
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Table 5 Contract Pricing Stage 2 Pairwise Tests

Test Rate GFee Remittance GFEE Grid MC BUBD Max
# Option Option Type Remittance LLGFee Eligibility Buyup

Option Eligibility
1 Fixed NotNull Gold Gold Y Prohibited <12.5
2 ARM Null FirstTuesday Gold N Required =12.5
3 Fixed Null FirstTuesday FirstTuesday Y Optional <12.5
4 ARM NotNull Gold FirstTuesday N Prohibited =12.5
5 Fixed NotNull ARC ARC N Required >12.5
6 ARM NotNull SuperArc ARC Y Optional Null
7 Fixed Null SuperArc SuperArc N Prohibited >12.5
8 ARM Null ARC SuperArc Y Required Null
9 ARM Null Gold ARC N Required <12.5

10 Fixed NotNull FirstTuesday SuperArc Y Optional =12.5
11 ARM ∼Null Gold Gold Y Optional >12.5
12 Fixed ∼NotNull FirstTuesday FirstTuesday N Prohibited Null
13 ∼ARM ∼NotNull ARC FirstTuesday N Optional >12.5
14 ∼Fixed ∼Null ARC ARC ∼Y Prohibited =12.5
15 ∼Fixed ∼NotNull SuperArc Gold ∼N Required Null
16 ∼ARM ∼NotNull SuperArc SuperArc ∼N ∼Prohibited <12.5
17 ∼Fixed ∼Null SuperArc FirstTuesday ∼Y Required >12.5
18 ∼Fixed ∼Null Gold Gold ∼N ∼Optional Null
19 ∼ARM ∼NotNull ARC Gold ∼Y ∼Prohibited <12.5
20 ∼ARM ∼NotNull FirstTuesday ARC ∼Y ∼Required =12.5
21 ∼Fixed ∼Null Gold SuperArc ∼N ∼Optional =12.5
22 ∼ARM ∼Null FirstTuesday ∼FirstTuesday ∼Y ∼Prohibited >12.5
23 ∼ARM ∼Null SuperArc ∼ARC ∼N ∼Optional =12.5

will trigger a total price recalculation of all price components that apply to the loan,

including GFEE/LLGFEE, BUBD and Delivery Fees. The price recalculation can be

approved either automatically or by hand. Any data change to loan and/or delivery fee

data will trigger a recalculation and reprice all price component data that are effective

at the time of settlement. This includes any changes to BUBD or contract GFEE grid

definition terms.

The mortgage loan entity has nearly 150 attributes, but only a few are relevant to

Loan Pricing. Twelve partitions were identified in this testable function. Two of the

12 are received from the price grids. These values are updated in the grids based on

the current market. Three others are intermediate parameters whose values are used

in the final calculations. Even though they participate in the calculations, their values

depend on the values of the other attributes that are inputs. (This is an example of

the controllability problem in these applications.)

Among the 12 partitions, only six influence the controllability of the pricing calcu-

lations. The remaining six influence observability. Test cases were derived for the base

choice (26 tests), the multiple-base choice (52 tests), and the pairwise coverage criteria

(72 tests). The requirements model approach was used to generate 131 tests, many of

which were redundant because the same flow of information is duplicated for Fixed,

ARM and Balloon contracts. More details about the Loan Pricing test designs can be

found in Alluri’s MS thesis [1].
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Table 6 Contract Pricing Stage 2 Requirements Modeling Tests

Test Rate GFee Remittance GFEE Grid MC BUBD Max
# Option Option Type Remittance LLGFee Eligibility Buyup

Option Eligibility
1 Fixed NotNull Gold Gold Y Prohibited >12.5
2 Fixed NotNull Gold Gold Y Prohibited ≤12.5
3 Fixed NotNull Gold Gold Y Prohibited >12.5
4 Fixed NotNull Gold Gold Y Prohibited ≤12.5
5 Fixed NotNull Gold SuperArc Y Prohibited >12.5
6 Fixed NotNull Gold SuperArc Y Prohibited >12.5
7 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5
8 Fixed NotNull Gold ARC Y Prohibited ≤12.5
9 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5

10 Fixed NotNull Gold FirstTuesday Y Prohibited >12.5
11 Fixed NotNull Gold ARC Y Prohibited ≤12.5
12 Fixed NotNull Gold FirstTuesday Y Prohibited ≤12.5
13 Fixed NotNull Gold Gold N Prohibited >12.5
14 Fixed NotNull Gold Gold N Prohibited ≤12.5
15 Fixed NotNull Gold SuperArc N Prohibited >12.5
16 Fixed NotNull Gold SuperArc N Prohibited ≤12.5
17 Fixed NotNull Gold SuperArc N Prohibited >12.5
18 Fixed NotNull Gold SuperArc N Prohibited ≤12.5
19 ARM NotNull FirstTuesday FirstTuesday Y Prohibited >25
20 ARM NotNull FirstTuesday FirstTuesday Y Prohibited ≤25
21 ARM NotNull FirstTuesday ARC Y Prohibited >25
22 ARM NotNull FirstTuesday ARC Y Prohibited ≤25
23 ARM NotNull FirstTuesday SuperArc Y Prohibited >25
24 ARM NotNull FirstTuesday SuperArc Y Prohibited ≤25
25 ARM NotNull FirstTuesday FirstTuesday N Prohibited >12.5
26 ARM NotNull FirstTuesday ARC N Prohibited =12.5
27 ARM NotNull FirstTuesday ARC N Prohibited =12.5

4.3 Amortization

The amortization calculator is a modular software component that calculates the amor-

tized cash flows for a given loan. Calculating the loan amortization requires 11 steps.

This system is an example of how different calculations will be triggered based

on preceding conditions. A total of 15 calculations follow one another in a sequence

and feed their outputs to the following calculator. Five are preliminary calculations.

The remaining 10 execute recursively until the end of the loan’s term. For example,

the ending balance of the loan changes from month to month, e.g., if the loan’s life

is 30 years, the loan will have 360 installments and when amortized it will have 360

records with varying ending balances for each month. For a given loan, the same types

of calculations occur 360 times. Therefore, when defining the scope of each testable

function, the loop is considered as one partition and critical characteristics of loops are

included as the blocks.

The system has 160 attributes, but only 14 contribute to the calculations. All 15

calculations were treated as testable functions. The total number of base choice tests

is 74. The multiple base choice coverage criterion did not offer any additional coverage,

as the partitions are the same for all the instruments. Thus MBC was not used for this

system. The blocks had no constraints among them, so the pairwise coverage criterion

also did not offer any additional coverage, and was not used. In addition, the FTM
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tool was not available when this system was tested, so the modeling technique was not

used in the Amortization system. More details about the Loan Pricing test designs can

be found in Alluri’s MS thesis [1].

4.4 Static Effective Yield

Specifications to calculate the Static Effective Yield (SEY) are described in the form of

use cases. This calculation is used in GO Amortization to calculate SEY amortization

for pools and in segments reporting to calculate SEY amortization for cohorts of whole

loans. Amortization calculation functions are recursive in nature.

The use case document had nine sections, but only the two with functional require-

ments were used in this system. The testing team identified eight testable functions.

Applying the base choice coverage criterion yielded 64 tests. The multiple base

choice coverage criterion did not offer any additional coverage, so was not used for this

system. The blocks had no constraints among them, so the pairwise coverage criterion

also did not offer any additional coverage, and was not used.

The requirements were classified into eight testable functions. For the modeling

technique, the requirements were grouped into three testable functions, producing 12

test cases. More details about the Loan Pricing test designs can be found in Alluri’s

MS thesis [1].

5 Results

The studies documented here only represent part of the complete set of software systems

on which this approach was applied, but the results were similar on other software

components. For example, the Contract Pricing and Loan Pricing systems belong to

the Selling System, which has about 1200 Java files.

This study measured two things; the ability of the tests to find faults, and coverage

of the tests. Results on these are described in the following subsections.

5.1 Fault Detection

All faults were naturally occurring and we did not know a priori how many total faults

were in the software. The programs’ correctness were determined by comparing the

outputs of the system-under-test and a simulator. Fault detection was not recorded for

the stage 1 tests, so only results from stage 2 tests are given. Faults found for all tests

on the four systems are shown in Table 7.

From these data, it is clear that the criteria-based tests found far more faults than

the requirements-based tests. Just considering the two systems that used requirements-

based tests, the criteria-based tests found 14, 17, and 23 faults, whereas the RM tests

only found 7. The specific faults found were all cumulative, that is, all the faults found

by RM were also found by BC, all the faults found by BC were also found by MBC,

and all the faults found by MBC were also found by PW. After seeing these results, the

program manager refused funding for further RM tests. This was a business decision

that we had to respect, even though we would prefer to have more data.
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Table 7 Faults Found by All Test Sets, Including Stage 1 and Stage 2

Software System BC Faults MBC Faults PW Faults RM Faults
Tests Found Tests Found Tests Found Tests Found

Contract Pricing 15 6 30 7 230 12 27 3
Loan Pricing 26 8 52 10 72 11 131 4
Amortization 74 18 N/A N/A N/A
Static Effective 64 17 N/A N/A N/A
Yield

Total 179 49 82 17 302 23 158 7

Table 8 Fault Efficiency – All Four Studies

Criterion Tests Faults Efficiency
BC 179 49 .27

MBC 82 17 .21
PW 302 23 .08
RM 158 7 .04

Although we were not able to capture the human costs of creating these tests (which

are affected by so many factors that the results would hardly be generalizable anyway),

the managers reported that the testing cycle was reduced from five human days to 0.5.

We can also take the number of tests as a rough measure of cost. A simple way

to estimate test efficiency of set of tests is to divide the number of faults found by

the number of tests. Table 8 shows that all four criteria-based design techniques were

far more efficient than the requirements modeling approach. Recall that we cannot

compare the total numbers for BC with the other criteria because it was applied to

all four studies. These data are also not generalizable because of the small sample

sizes. Nevertheless, these data convinced management at Freddie Mac of the positive

return on investment for criteria-based testing and automation. We know of no industry

standard for the percentage of tests that are expected to find faults, but the test

managers at Freddie Mac were shocked at these numbers. Based on their experience,

they expected about 5% of the tests to reveal a fault, and considered 10% efficiency to

be outstanding (or a sign of very poor software).

Further analysis has revealed that the tool used to create pairwise tests was some-

what inefficient. In fact, NIST’s ACTS pairwise tool [11] created only 17 tests in stage

1 for the Contract Pricing system. This would change the total number of tests from

230 to 40, and if those tests found the same number of faults, the efficiency would be

over 50%. Of course, we are not able to run those tests on the same software, so we

cannot know whether a similar number of faults would be found.

We also believe that the data from the MBC and PW tests emphasize that the extra

work will find more faults, but with higher cost. Thus the strategy we used of bringing

in the stronger criteria when the extra expense is deemed necessary, was validated.

Perhaps the strongest result, however, came after the software was completed and

deployed. During the final system testing of these projects, 17,000 records were run and

zero defects were detected. This had never happened with any Freddie Mac software

before, and this was the first system to go into production with zero non-conformances.

In the years since this project finished (in 2008), ZERO faults have been detected in

the software tested.
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Table 9 Statement Coverage Results

Software System LOC BC Cover MBC Cover PW Cover RM Cover

Contract Pricing
SwapContractService 258 15 86% 30 92% 23 92% 27 92%
SwapContractCalculator 166 15 85% 30 90% 23 90% 27 82%
Loan Pricing 882 26 86% 52 89% 72 92% 131 97%
Amortization 3254 74 100%
Static Effective 1574 56 100%
Yield

This might be a little surprising in the systems where MBC and PW were not used,

since they found additional faults when they were used. But testing stopped with BC

when analysis of the input domain model (the partitions and blocks) indicated MBC

and PW would not improve testing. So we would not expect many additional faults to

be found by stronger criteria in those systems. On the other hand, these systems could

have faults that simply have not been revealed as failures yet.

5.2 Coverage Measurement

Two types of coverage measures were used to determine the effectiveness of testing:

functional coverage and structural coverage. In this paper, functional coverage is a

measure of the number of functional requirements executed, and structural cover-

age is a measure of the code statements executed (LOC). We used the requirements

traceability matrix (RTM), which is the list of requirements and the tests that tested

each, to evaluate functional coverage and Parasoft’s jTest2 to evaluate structural cov-

erage. jTest offers statistics for statement and method coverage (but not branch, for

example). Testers did not have access to the source code, so we relied on developers to

help us gather the structural coverage.

Table 9 shows the statement coverage for the stage 2 tests on all four systems,

broken into four separate sections for each system. The coverage on the two major

components of Contract Pricing are shown separately, although the same tests were

used on both.

Table 10 shows the functional requirements coverage for the stage 2 tests on all four

systems studied, broken into four separate sections for each system. All tests achieved

100% functional requirements coverage.

Contract Pricing had 89 requirements for business rules, 22 system-specific require-

ments, and 92 requirements to generate error messages, for a total of 203 requirements.

It had an additional 22 requirements for different combinations of the attributes. The

BC tests covered all 203 requirements and 8 of 22 combination requirements. The other

combination requirements were covered by the pairwise tests.

The Loan Pricing requirements were captured in use cases that have one main flow,

one alternate flow, and three exception flows. The BC, MBC, and PW tests all covered

100% of the functional requirements.

2 http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
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Table 10 Functional Requirements Coverage Results

Software System BC Cover MBC Cover PW Cover RM Cover

Contract Pricing 15 100% 30 100% 23 100% 27 100%
Loan Pricing 26 100% 52 100% 72 100% 131 100%
Amortization 74 100%
Static Effective 56 100%
Yield

5.3 Observations

After testing was completed, we asked the testers and managers informally about their

opinions of the process and the results. The testers all agreed that the PW criterion

is less useful when the characteristics have a large number of attributes because it

is difficult to map the PW tests to the requirements when traceability is important.

However, the pairwise criterion definitely helps reduce or eliminate the duplicate pairs

of inputs and hence is used to eliminate the constraints that do not coexist. If the

implementation is such that it will not allow these combinations to be input, then

almost all of the pairwise tests become infeasible. Grindal [9] proposed a submodel

strategy to handle constraints, which was later found to be more useful for this problem

than using PW directly as in this system. Newer tools such as NIST’s ACTS [11] can

include constraints during test data generation, making PW even simpler to apply.

Although the pairwise criteria was able to cover the 16 requirements that MBC could

not, it took a very long time to filter the tests from all the PW tests.

The attributes for Loan Pricing had many constraints. The PW tests gave good

coverage, but with a lot of tests. As noted previously, this may be an artifact of the

tool used to compute pairwise. PW often has fewer tests than BC. Generally, the

number of tests needed for BC is proportional to the number of partitions, whereas the

number of tests needed for PW is only log the number of partitions [2,8]. To manually

determine which PW tests filled the gaps left by BC took very long time. Most of

the requirements modeling tests were redundant because the same information flow is

duplicated for Fixed, ARM, and Balloon loans. The requirements model generated 131

tests, many of which were redundant because the same information flow was duplicated

for three different kinds of contracts.

Initially, 12 requirements tests were designed for the Static Effective Yield study,

but they were flawed in a way that would have made them very expensive to automate.

5.4 Threats to Validity

A study like this has several threats to validity. Most obviously, the study was within

one company on a particular kind of software. Thus we cannot be sure that the success

would be duplicated in other settings. Another potential validity threat is the FTM

tool used in the study, which could have been flawed. Great care was taken to test

FTM and the models and resulting tests were spot-checked for accuracy. If FTM was

flawed, it seems likely the resulting tests would be less effective, thus this would be a

bias against the results presented in this paper. Also, at certain points in the process

(as described in Section 3) human testers had to make decisions. It is possible that

different testers would have different results. Taken together, these threats mean that
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we cannot conclude that this type of testing will succeed in all settings. Rather, we

know that it is possible for this type of testing to improve testing and lead to higher

quality software in some settings.

6 Conclusions and Future Work

This paper shows how high-end, criteria-based, semi-automated test design and im-

plementation can have a strong positive impact on testing in industry. The company,

Freddie Mac, depends on software for success in all aspects of its business and the qual-

ity of its software is a primary factor in the success of the company. Problems with the

software can result in loss of very large amounts of money. After testing was completed,

we asked the testers and managers informally about their opinions of the process and

the results. All parties involved, including test management, testers, developers, de-

velopment managers, and upper management, agreed that this testing process helped

create tests that were more effective and with less cost. As a result of this industrial

study, these ideas are being infused into software development and software testing is

being improved throughout the company. As far as we know, nobody has reported on

the use of input space partitioning in an industrial setting before.

As additional analysis, we analyzed post-testing defects in the previous eight re-

leases for the software used in systems 1 and 2. The analysis showed that the testing

approaches used in this study would have eliminated 75% of the post-delivery defects.

The overriding advantage of using ISP (a criterion-based) approach was not sur-

prising: we were able to generate fewer tests that were more effective, and do it more

efficiently. The ISP method does not require a strong background in math or computer

science, both of which are often short in software testing teams. The ISP method also

has a very clear, structured, process to follow, which the testers reported being very

comfortable with. We were pleased to find that the ISP tests gave good coverage of

both requirements and source code. It was also very convenient to have a range of test

criteria, allowing testers to “start small” (with BC) and move up to stronger criteria

(MBC and PW) when needed.

The strong documentation and automation of our tests also helped with a problem

called data aging. In financial calculations, tests during one reporting cycle (for exam-

ple, a month) have to change to be used in another reporting cycle. By designing our

tests in an abstract way, the same abstract tests could be reused in multiple reporting

cycles by instantiating them with new values. Not surprisingly, the same characteris-

tics of the tests made it easy to regenerate new tests when requirements and design

changed.

One disadvantage of input space partitioning is that the quality of the results

depended somewhat on how well the testable functions are identified and how discrete

they are. For example, system 3 initially considered all the calculators as one single

testable function. When the 11 separate calculations were considered as individual

testable functions, they become very simple and straightforward. ISP also has the

potential to generate a lot of tests, so is not effective without strong automation. If not

designed carefully, the pairwise criterion can lead to many invalid tests. Both of these

problems were present with the tool used in this study, but not in more modern tools

such as PICT [6] and ACTS [11].

Automating the requirements modeling approach provided many advantages, start-

ing with the fact that the tool allowed tests to be quickly generated from the model.
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When modeled early, the requirements let the test analyst approximate the number of

tests needed. The FTM tool also provides clear traceability from requirements to tests,

as well as helping ensure tests are repeatable and detailed, important audit require-

ments for the testing. We were also able to share the requirements models, in their tree

structure, with business analysts, programmers, and testers, which greatly improved

understanding of the entire process. Having the models available also made it very easy

to adapt to changes in the requirements, and identify relations or constraints among

input attributes to the software.

A disadvantage of the modeling approach is that it put a burden on the testers.

To create the models, the test design team needs to understand software design and

construction to do things like analyze UML diagrams and anticipate potential pro-

gramming mistakes. In addition, the test team also needs to have substantial domain

knowledge. We found that few people have both kinds of knowledge, so the teams

must be well formed and have good communication. We also found that different test

designers modeled the same requirements differently. Some designers wanted to refine

the models continuously, seeking unachievable perfection, whereas others were quicker

but made mistakes such as omitting important requirements or creating lots of redun-

dant tests (as in system 2). Another problem encountered is that different teams have

different development processes, causing management overhead in adapting the new

testing ideas to each different process.

A problem we identified early is that Freddie Mac’s software exhibits both low

controllability and low observability. We interpret the high statement coverage to mean

that we were able to solve the controllability problem. We addressed the observability

problem by asking the programmers to log intermediate values; this made it much

easier to diagnose the differences in expected and actual results.
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