
School of Innovation,
Design and
Engineering

Module 4: Static Program Analysis

(Revised: 2017-04-19)

This document provides the laboratory instructions for the part of
Module 4 that deals with static program analysis. The objective of the
lab is to give hands-on experience with the state-of-the-art tool Astrée
for static program analysis. Astrée performs a value analysis, and can
issue warnings for a number of value-related run-time errors based on
the results of this analysis. Since Astrée's analysis is sound, the
absence of warnings guarantees that the code is free from those
defects.

ASTRÉE HANDS-ON EXERCISE

This exercise will take place at MDH during one of the campus days.
You will use our lab equipment, Dell Inspiron laptops, where we have
preinstalled Astrée. If you want to get started before the campus day, or
if you are curious in general how Astrée works, then you can also
obtain an evaluation license and install the tool on your own computer.
see Section 7 below.

1. Starting Astrée

Astrée comes bundled with the “RuleChecker” tool: the combined tool
is called “a³ for C”. RuleChecker performs various syntactic checks for
things like compliance with coding standards: we will not consider this
tool any further in this exercise.

A³ for C has a server-client architecture, with the server doing the
analyses and the client taking care of the user interaction, analysis
configuration, etc. We have set up the client on each lab machine, and
we have set up a single server stl.idt.mdh.se. With this setup, a³ for C
is launched in the following way:

 Launch a³ for C. (Under Windows, use the “Astrée” launcher;
under linux, run “alauncher” from the command line.)

 Select the “a³” tab, and click the “a³ for C” entry.
 A welcome window will appear, as well as a popup window

“Connect to server”. If the server is already configured then
“Host” is set to “stl.idt.mdh.se”, and “port” to “36000”. If not,
then enter these values.

 Then select your own, unique Username and Password. Do not
go with the default “anonymous” user name: we have disabled
this entry to prevent that all your projects will end up in the
same place. Do not forget your login credentials, once you have
created them!

 Then click "OK". The client will then connect to the server, and a
new popup window with title "Open project" should appear. It
should be empty at this stage: click "cancel" to make it go away.

2. Exploring the features of Astrée
Visiting Address: Drottninggatan 16 A
Postal Address: P.O. Box 325, SE-631 05 Eskilstuna,
Sweden
Phone: +46 16 153 600

Visiting Address: Högskoleplan 2
Postal Address: P.O. Box 883, SE-721 23 Västerås,
Sweden
Phone: +46 21 101 300

Web: www.mdh.se/idt
E-mail:
{name.surname}@mdh.se

Let us now turn to the welcome window. Click "View examples" under
"Projects" (to the left in the welcome screen). You will get a list of
predefined example projects, for Astrée to the left and RuleChecker to
the right. These projects are designed to highlight different features of
the analysis tools. We will now use some of these example projects to
show how Astrée operates, as well as some of its features.

Open the "Scenarios" sample project. The toolbar will extend, a menu
will appear to the left, and some green buttons will appear at bottom.
Now let's explore the menu to the left. The different entries are used to
control the operation of Astrée.

At the top is the project name. By right-clicking it, you can change
some project settings. In particular you can set the project to be
private, which means that it will not be visible to other users. Later,
when you create your own projects, you should make them private such
that no other students can access them.

Configuration: here, the different settings controlling the analysis can
be changed. The most interesting part is the “Analyzer”. If you click it,
the main window will contain a number of options that can be set to
control the analysis. Now double-click on the “Astrée” heading. The
subheadings “Semantics”, “Precision”, and “Output” will appear, each
with a number of options to set. The “Semantics” options gives fine
details how the actual C implementation works (necessary, since the C
standard gives room for different semantics). The “Precision” options
are used to fine-tune the analysis to find the best trade-off between
precision and analysis time: we will return to these options later. The
“Output” options, finally, affect what to report from the analysis and in
which form.

Results: this heading collects means to view and report on analysis
results. Analysis results are also reported, in various ways, in other
places: an analysis summary is shown in the lower left corner, and the
buttons at the bottom of the window will display various analysis
results when clicked.

Files: this is a file tree containing the C files in the project that have
been preprocessed, and are ready to analyze. Clicking on a file will
show it in the main window.

3. Analyzing a first predefined example

Double-click "scenarios.c" under “Files” (Preprocessed). you will now
see the code to be analyzed. To the right you have the original C code
in the file, and to the left the C code that results after running the C
preprocessor on the original code. It is the latter code that is being
analysed by Astrée. As you can see, this code also contains some Astrée
directives that start with the string "__ASTREE_": __ASTREE_assert tells
Astrée to check a certain fact, __ASTREE_log_vars will show the
calculated constraints for the values of the listed program variables in
the chosen program point, __ASTREE_volatile_input will mark a
variable as volatile, and __ASTREE_unroll will cause Astrée to analyze
a certain number of loop iterations separately from each other thus
potentially increasing the precision of the analysis.

2(5)

Press the "play" button in the toolbar to analyze the example program.
This will cause all the code that is reachable from the selected entry
point to be analysed. Look what happens. In the lower left, the "traffic
light" will turn to red. This means that the analysis has detected some
potential serious errors in the code.

Now browse through the tabs for the error reporting, to the lower
right. They provide different views. In particular, the "Output" tab
gives the full, raw output from the analysis. Scroll through it until you
find the lines starting with “ALARM”. Some of them contain the text
“M2012.8-*.*-required”: these alarms are issued by RuleChecker and
indicate that some MISRA 2012 coding rules were violated (MISRA is a
coding standard for C code in safety-critical applications). Here, we are
more interested in the other alarms: they are all issued by Astrée. Most
of the alarms point out possible problems, which may be false positives,
but the alarms that are followed by lines in light red starting with
“ERROR” are problems that for sure are present. If you click on the
error message (or scroll the left code window), then you will find the
erring statements highlighted in red. Try to understand the alarms:
what has caused them? Are they real, or false positives? Can you spot
the bugs in the code causing the alarms?

4. Analysing further predefined examples

Let's check out another example. Click "Welcome" under "Example 1:
scenarios" to the upper left to get back the sample projects menu, and
select the "Dhrystone" example. Analyse it. This is an example of a
project that consists of several source files, and it is intended to show
the capability of Astrée to make a precise analysis also in situations
where there are complex calling relations between different functions.
Scroll through the text displayed under the Output tab and inspect the
erring statements in the correct files. Also have a look at the "Not
reached" tab: now, you will see that for some files the coverage is not
100%. This means that some code is unreachable, possibly due to a
fatal runtime error that will cause an interrupt. In the preprocessed
code window, the unreachable code will be grey.

If you wish, you may also analyze the remaining example projects.

5. Setting up and analyzing simple projects

Now start a new project by selecting "New" from the "Project" menu.
This will start the "New Project" wizard. Set the project type to
“Astrée”. Add the source file unroll.c (not preprocessed) that is
available from the course web page.Then go through the steps to set up
the project: just click "Next" (and “Finish”) to allow the default
configuration for the analysis. When the wizard is done, you should set
the starting point for the analysis to be “main” (Analyzer → Analysis
entry → double-click “value” and enter “main”). Then preprocess the
file (select Preprocessor, press the "Preprocess" button to the lower
right, then press "Import files", then “OK” in the popup window). Also
don't forget to make the project private through right-clicking the
project name in the menu.

3(5)

Analyze the example. If the project is set up correctly then the green
traffic light will be lit, indicating zero detected runtime errors (for this
program: no over/underflows, or divisions by zero). Contrary to
dynamic analysis and testing, since Astrée's analysis is designed to be
safe, this can be trusted. Thus, there is no need to further test this
program for these errors.

The main part of this program is a loop. Astrée succeeded in proving
the absence of runtime errors since it, by default, analyzes a large
number of loop iterations separately. To disable this setting for this
loop, insert the directive __ASTREE_unroll((0)) immediately before
the loop in the left code window. Then run the analysis again. (If a
window pops up asking to save files, just click “save”.) What is the
result, and why to you think that it differs from the first result?

The next example to analyze is insertsort.c (not preprocessed), which is
available from the course web page. The program applies the well-
known insertsort sorting algorithm to sort an array with eleven
numbers. It contains a planted bug. Can you spot it? Spend a few
moments inspecting the code to see if you can find it. (If you have
problems to spot the bug, then ask the instructor.) Analyse the code,
and study the report. Not surprisingly you will have a cascade of errors.
Some are real, some might be false positives. (It might be helpful to
check the tab “Findings”, which provides a more structured view of the
issues found.)

Correct the code, and analyse it anew. (You can edit directly in the
window for the preprocessed code. Click OK in the popup window when
running the analysis.)

As you see, there are still quite some errors being reported. They are
actually false positives, and are due to that the analysis over-
approximates the possible values of the loop variable j. This can be
remedied by setting the "loop unrolling" limits to high values enabling
both the inner and outer loops to be semantically unrolled during the
analysis. Select Analyzer → Astrée → Precision → Loops and set
"Maximum number of outer (inner) loop unrollings" (two settings) to
10. Analyse anew both the erroneous and the corrected versions of the
program. Notice the results! Did you succeed to prove the absence of
runtime errors for the corrected version?

6. Analyzing own code (optional)

If you have some suitable C code of your own, then load it onto the
machine, set up a new project in Astrée, import the code into the
project, and analyse it! Start with the standard settings for the analysis.
If some bugs are reported, then increase the precision of the analysis to
see if it is a false positive that will go away.

7. Continuing on your own

If you want to try out Astrée further on your own, then you can request
a time-limited free evaluation license from AbsInt GmbH at
http://www.absint.com/astree/contact.htm.

8. Assignment

4(5)

http://www.absint.com/astree/contact.htm

The assignment for this lab is to write a report that gives an account for
your work and your findings in Sections 3 - 7 above. Describe how you
analysed the code, which real errors in the code that you found, how
you tuned the analysis in order to get rid of false positives, and whether
or not you ended up with a piece of code with zero alarms (and thus
provably free from the run-time errors that Astrée can detect). If you
analysed some own code, then it is very interesting to know whether
you managed to uncover any previously unknown bug or weakness in
the code. Send your report (pdf format) to bjorn.lisper@mdh.se.

5(5)

mailto:bjorn.lisper@mdh.se

	Module 4: Static Program Analysis

